
CPSC 329

David Ng

Winter 2017

Contents

1 January 9, 2017 5
1.1 Introduction . 5

2 January 11, 2017 5
2.1 Information Security . 5
2.2 Challenges to Computer Security . 6
2.3 Computer Security Terminology . 6
2.4 Threat Consequences . 7

3 January 13, 2017 9
3.1 Computer System Assets . 9
3.2 Network Attacks . 9
3.3 Security Design Principles . 10
3.4 Methods of Attack . 10

4 January 16, 2017 11
4.1 Computer Security Strategy . 11
4.2 Password Authentication . 11
4.3 Guess-Verify Attack . 13

5 January 18, 2017 13
5.1 Guess-Verify Attack Cont’d . 13
5.2 Defending Against Guess-Verify Attacks 14
5.3 Keystroke Logging, Phishing, and Social Engineering 15

6 January 20, 2017 15
6.1 Password Protection . 15

7 January 23, 2017 17
7.1 Graphical Passwords . 17

1

Information Security and Privacy 2

8 January 25, 2017 18
8.1 Vulnerabilities . 18
8.2 Token Based Authentication . 19

9 January 27, 2017 20
9.1 Token Based Authentication Cont’d 20

10 January 30, 2017 21
10.1 Token Based Authentication Cont’d 21

11 February 1, 2017 22
11.1 Biometric Authentication . 22
11.2 Fingerprint and Iris Scanning . 24

12 February 3, 2017 24
12.1 Handwriting Biometrics . 24
12.2 Biometric Assessment . 25

13 February 6, 2017 26
13.1 Access Control . 26
13.2 Unix/Linux File System Security . 27

14 February 8, 2017 29
14.1 NTF . 29

15 February 10, 2017 29
15.1 Role Based Access Control (RBAC) 29
15.2 Attribute Based Access Control (ABAC) 31

16 February 13, 2017 31
16.1 Midterm Review . 31

17 February 27, 2017 31
17.1 Introduction to Cryptography . 31
17.2 Ciphers . 32

18 March 1, 2017 33
18.1 Ciphers Cont’d . 33

19 March 3, 2017 35
19.1 Measures of Security . 35
19.2 Types of Cryptography . 35
19.3 Cryptanalytic Attacks . 36

Information Security and Privacy 3

20 March 6, 2017 36
20.1 Cryptographic Hash Functions . 36

21 March 8, 2017 39
21.1 Cryptographic Hash Function Applications 39

22 March 10, 2017 40
22.1 Symmetric Cryptography . 40
22.2 Block Ciphers . 41

23 March 13, 2017 43
23.1 Block Cipher Modes of Operation . 43
23.2 Stream Ciphers . 43
23.3 Confusion and Diffusion . 44

24 March 15, 2017 45
24.1 Public Key Cryptography . 45
24.2 Diffie-Hellman Key Exchange . 46

25 March 17, 2017 48
25.1 Enveloped Public Key Encryption 48
25.2 RSA . 49

26 March 20, 2017 50
26.1 Digital Certificates . 50

27 March 24, 2017 52
27.1 SSL and TLS . 52
27.2 SSL and TLS Protocols . 53
27.3 Master Secret . 55

28 March 27, 2017 55
28.1 Web Security . 55
28.2 Server and Client . 57

29 March 29, 2017 57
29.1 Browser Security . 57

30 March 31, 2017 59
30.1 Web Authentication . 59

31 April 3, 2017 60
31.1 Malware . 60
31.2 Viruses . 61

Information Security and Privacy 4

31.3 Worms . 63

32 April 5, 2017 64
32.1 Worm Development . 64
32.2 Trojan Horse . 64
32.3 Botnets . 65

33 April 7, 2017 66
33.1 Network Security . 66
33.2 Packet Routing . 67
33.3 Local Area Routing . 67

34 April 10, 2017 69
34.1 Network Attacks . 69
34.2 Defense Against Network Flooding 70
34.3 Firewalls . 71
34.4 Firewall Approaches . 72

35 April 12, 2017 72
35.1 Firewall Types . 72
35.2 Firewall Strengths and Weaknesses 73
35.3 Domain Name System . 74
35.4 DNS Security . 74
35.5 Virtual Private Network . 75

Information Security and Privacy 5

1 January 9, 2017

1.1 Introduction

Information security and privacy is the practice of preventing unauthorized
access, use, disclosure, disruption, modification, inspection, recording or destruction
of information. It is a general term that can be used regardless of the form the
data may take. Computer security is information security applied to technology.
Several topics will be covered in this course, including authentication, access control,
communication security, malware, cryptography, and the social aspects of security.

2 January 11, 2017

2.1 Information Security

In terms of information security, we desire for our private data to be secure from
others. That is, for our data to remain unchanged. However, we also desire access to
our data when we wish. Information security follows the principles of confidential-
ity, integrity, and availability. this is referred to as the Security Requirements
Triad. Confidentiality concerns preserving authorized restrictions on information
access and disclosure, including the means for protecting personal privacy and pro-
prietary information. Integrity concerns guarding against improper information
modification or destruction, including ensuring information nonrepudiation and au-
thenticity. Availability ensures timely and reliable access and use of information.

For companies, there may be different levels of data access. In terms of confi-
dentiality, companies may wish to protect stored data (employee data, project data,
meetings, company secrets, user information) and communications (within the com-
pany, with sister companies, with users). Integrity involves securing all stored data
and communications, and is thus a requirement for all data. Availability includes
access to data, communication, and services (for employees, users), including access
to the company’s website, email, network, and all other operations.

Computer security is defined as the protection afforded to an automated infor-
mation system in order to attain the applicable objectives of preserving he integrity,
availability, and confidentiality of information system resources. This includes hard-
ware, software, firmware, information/data, and telecommunications. The focus of
computer security is on the following three fundamental questions:

1. What assets do we need to protect?

2. How are those assets threatened?

3. What can we do to counter those threats?

Information Security and Privacy 6

2.2 Challenges to Computer Security

In computer security, potential attacks on security features must be considered.
Procedures that are used to provide particular services are often counterintuitive.
Physical and logical placement needs to be determined, and multiple algorithms or
protocols may be involved. It is important to note that all an attacker needs is
to find one single weakness to infiltrate the system. The developer needs to find
all weaknesses. Furthermore, users and system managers usually do not see the
benefits of security until a failure occurs. Security requires regular and constant
monitoring, but is often an afterthought to be incorporated into a system after the
design is complete since it is thought of as an impediment to efficient and user-
friendly operation.

2.3 Computer Security Terminology

We now introduce the following terminology to be used in the class:

1. Adversary (Threat Agent) - An entity that attacks, or is a threat to, a
system.

2. Attack - An assault on system security that derives from an intelligent threat;
a deliberate attempt to evade security services and violate security policy of
a system. Attacks may be a passive or active attempt to alter/affect system
resources, and may be performed by insiders or outsiders. An insider is some-
one authorized to use the system, while an outsider is someone not authorized
to use the system.

3. Countermeasure - An action, device, procedure, or technique that reduces
a threat, a vulnerability, or an attack by eliminating or preventing it, by
minimizing the harm it can cause, or by discovering and reporting it so that
corrective action can be taken. Countermeasures are actions taken to pre-
vent (through cryptography), detect/respond (intrusion detection allowing
shut down or tracing of intruder), and recover (through backup). Residual
vulnerabilities may result from new vulnerabilities through introduced coun-
termeasures. The goal is to minimize residual vulnerabilities.

4. Risk - An expectation of loss expressed as the probability that a particular
threat will exploit a particular vulnerability with a particular harmful result.

5. Security Policy - A set of rules and practices that specify how a system or
org provides security services to protect sensitive and critical system resources.

6. System Resource (Asset) - Data; a service provided by a system; a sys-
tem capability; an item of system equipment; a facility that houses system
operations and equipment.

Information Security and Privacy 7

7. Threat - A potential for violation of security, which exists when there is
a circumstance, capability, action, or event that could breach security and
cause harm. Threats are capable of exploiting vulnerabilities and represent a
potential security risk.

8. Vulnerability - Flaw or weakness in a system’s design, implementation, or
operation and management that could be exploited to violate the system’s
security policy. Vulnerabilities may lead to corrupted (loss of integrity), leaky
(loss of confidentiality), or unavailable or slow (loss of availability) files.

2.4 Threat Consequences

There are four kinds of threat consequences. Unauthorized disclosure is a cir-
cumstance or event whereby an entity gains access to data for which the entity is
not authorized. Unauthorized disclosure is a threat to confidentiality. The following
types of attacks can result in this threat consequence:

• Exposure: This can be deliberate, as when an insider intentionally releases
sensitive information, such as credit card numbers, to an outsider. It can also
be the result of a human, hardware, or software error, which results in an
entity gaining unauthorized knowledge of sensitive data. There have been nu-
merous instances of this, such as universities accidentally posting confidential
information on the Web.

• Interception: Interception is a common attack in the context of communi-
cations. On a shared local area network (LAN), such as a wireless LAN or
a broadcast Ethernet, any device attached to the LAN can receive a copy of
packets intended for another device. On the Internet, a determined hacker can
gain access to e-mail traffic and other data transfers. All of these situations
create the potential for unauthorized access to data.

• Inference: An example of inference is known as traffic analysis, in which an
adversary is able to gain information from observing the pattern of traffic on
a network, such as the amount of traffic between particular pairs of hosts on
the network. Another example is the inference of detailed information from
a database by a user who has only limited access; this is accomplished by
repeated queries whose combined results enable inference.

• Intrusion: An example of intrusion is an adversary gaining unauthorized
access to sensitive data by overcoming the system?s access control protections.

Deception is a circumstance or event that may result in an authorized entity
receiving false data and believing it to be true.

Information Security and Privacy 8

• Masquerade: Could be an attempt by an unauthorized user to gain access
to a system by posing as an authorized user; Trojan horse. It could also be
someone guessing a user’s bad password to obtain unauthorized access.

• Falsification: Altering or replacing of valid data or the introduction of false
data.

• Repudiation: To successfully deny an attack. In this case, a user either
denies sending data or a user denies receiving or possessing the data.

Disruption is a circumstance or event that interrupts or prevents the correct
operation of the system services and functions.

• Incapacitation: A result of physical destruction of or damage to system hard-
ware. It is possible to damage hardware with software, such as by disabling
fans.

• Corruption: System resources or services function in an unintended manner
through unauthorized modification. For instance, installing backdoors. Mali-
cious software in this context could operate in such a way that system resources
or services function in an unintended manner. Or a user could gain unautho-
rized access to a system and modify some of its functions. An example of the
latter is a user placing backdoor logic in the system to provide subsequent
access to a system and its resources by other than the usual procedure.

• Obstruction: The overload of the system or interference with communica-
tions through intentionally filling up logs to drain disk space. This could be
achieved by disabling communication links or altering communication control
information. Another way is to overload the system by placing excess burden
on communication traffic or processing resources.

Usurpation is a circumstance or event that results in control of system services
or functions by an unauthorized entity.

• Misappropriation: This can include theft of service. An example is a dis-
tributed denial of service attack, when malicious software is installed on a
number of hosts to be used as platforms to launch traffic at a target host.
In this case, the malicious software makes unauthorized use of processor and
operating system resources.

• Misuse: Misuse can occur by means of either malicious logic or a hacker that
has gained unauthorized access to a system. In either case, security functions
can be disabled or thwarted.

Information Security and Privacy 9

3 January 13, 2017

3.1 Computer System Assets

The assets of a computer system can be categorized as hardware, software, data,
and communication lines and networks. In this subsection, we briefly describe these
four categories and relate these to the concepts of integrity, confidentiality, and
availability:

Hardware equipment can be stolen or disabled, thus denying services. This is an
example of a threat to availability.

Software on the other hand, can be deleted. Thus, programs will not be available
to users. Confidentiality could be at risk should an unauthorized copy of the software
be made. Furthermore, the integrity of the software could be affected, since a
working program could be modified to either cause it to fail during execution, or to
cause it to perform an unintended task.

Data availability could be at risk, since files can be deleted, denying access to
users. Confidentiality should also be considered in terms of data, since an unautho-
rized read of data could be performed. Furthermore, data integrity could be at risk
since existing files could be modified, and new files could be fabricated.

Communication lines could be at risk to availability, since messages could be
destroyed, and communication lines or networks could be rendered unavailable.
Confidentiality is also of particular concern, since messages could be read and the
traffic patters of those messages observed. Integrity should be considered as well,
since messages could be modified, delayed, reordered, or duplicated. False messages
could also be fabricated.

3.2 Network Attacks

Networks are susceptible to both passive and active attacks. Passive attacks
attempt to learn or make use of information from the system, but does not affect
system resources. This may include eavesdropping and monitoring transmissions.
Passive attacks are difficult to detect, and the emphasis is on prevention rather
than detection. Two types of passive attacks are the release of message contents
and traffic analysis. We would like to prevent an opponent from learning the contents
of these transmissions.

Active attacks involve modification of the data stream. Our goal is therefore to
detect them, and then recover. The four categories of active attacks are masquerade,
replay, modification of messages, and denial of service. A masquerade takes place
when one entity pretends to be a different entity. Replay involves the passive capture
of a data unit and its subsequent retransmission to produce an unauthorized effect.
Modification of messages simply means that some portion of a legitimate message is
altered, or that messages are delayed or reordered, to produce an unauthorized effect.
Lastly, the denial of service prevents or inhibits the normal use or management of

Information Security and Privacy 10

communications facilities.

3.3 Security Design Principles

We note that there is no foolproof design, but we do have guiding principles:

• Economy of mechanism states that the simplest design results in a simple
testing procedure in terms of security.

• Open design, as opposed to security through obscurity, claims that the design
should not be secret. With more people knowledgeable of the system, there is
a better chance to spot problems.

• Complete mediation relates to checking every access point. It is related to
caching permission checks. For instance, writing to files through permissions
at intermediate steps.

• Least privilege states that the less the better. We should give as little
privilege as necessary. An example would be root access provided by Ubuntu.

• Fail-safe defaults refers to the lack of access that is the default. For instance,
newly created users should have strong default passwords.

• Psychological acceptability states that users should not consider security
mechanisms an enemy. The security features should not interfere with work,
and should be easy to comprehend.

Other design principles include isolation, encapsulation, and modularity.

3.4 Methods of Attack

An attack surface refers to reachable and exploitable vulnerabilities. For instance,
unnecessary services attached to public ports, services on the inside of a firewall,
buggy PDF or Flash applications, email clients that automatically open files, and
employees susceptible to social engineering, especially those with high access level.
Attack surfaces can be distinguished into three separate categories, with network
attack surface concerning vulnerabilities in network protocols or flawed designs in
services, software attack surface concerning vulnerabilities in applications and
the operating system such as through an insecure web server, and human attack
surface concerning social engineering, human error, or an insider attack.

An attack tree is a branching hierarchical data structure that represents a
set of potential techniques for exploiting security vulnerabilities. It is a graphical
description of a threat, possible attacks due to the threat, and possible risks. The
root node is the goal of the attack, and the children are possible ways to achieve
that goal. Leaf nodes represent possible ways to initiate the attack. Nodes with the

Information Security and Privacy 11

same parent are alternatives to accomplish the same goal. We can append additional
information to the attack tree. For instance, we can consider whether the options
are possible or impossible, legal or illegal, easy or hard, and cheap or expensive.

4 January 16, 2017

4.1 Computer Security Strategy

For an organization, a computer security strategy may include a security policy,
implementation of security measures (prevention, detection, response, and recovery),
and evaluation.

At the very minimum, the security policy should be an informal description of
desired system behaviour. For instance, it may include sections on confidentiality,
integrity, and availability. It is more useful when it is a formal statement of rules
and practices relate to security. These may include a password policy, a privacy
policy, an internet usage policy, and a policy for the disposal of old equipment.

To enforce these policies, we can employ a manual procedure whereby a per-
son checks practices for compliance. For example, In Canada, the federal Personal
Information Protection and Electronic Documents Act (PIPEDA) regulates the col-
lection, use and disclosure of personal information in the private sector. An organi-
zation subject to the law uses a privacy policy as part of meeting its obligations.
A privacy officer oversees all the activities related to the development, imple-
mentation, maintenance and adherence to the organization’s privacy policies and
procedures, whereas an Office of Privacy Commissioner (OPC) oversees the
compliance. We also note that some policy enforcement can be automated, as is the
case with firewalls that can block access to the internet.

4.2 Password Authentication

A password is a shared secret between a user and a computer system (server). The
purpose of a password is to prove one’s identity. Passwords are very widely used as a
form of authentication. In picking a password, we want it to be difficult to guess, but
easy to remember. In the process of password authentication, the user first supplies
their user identification, alongside their password. This pair must match a password
table on the system. The system compares the pair against the information stored
on the system. Successful authentication allows the user to access different parts
of the system. The reason we need user identification is to determine the user’s
privileges.

Error messages can reveal sensitive information. For instance, if the user-
password pair failed, then the error could indicate that no such user was found.
This could reveal information about whether there was such a user to begin with.
It is advantageous on the other hand, since it notifies the user that they entered an
invalid username or password. In the event that the error message allows one to

Information Security and Privacy 12

click if they forgot their password, this can reveal information about the existence
of a user.

There are many different methods for finding other peoples’ passwords. They are
grouped into two categories, with guess-verify attacks simply guessing and verify-
ing based on some leaked information about passwords, and keylogging, phishing,
and social engineering obtaining the password directly. To avoid this, we need to
ensure that the passwords are hard to guess. We can increase password strength to
accomplish this. Entropy is used to measure the strength of passwords. The unit
of entropy is a bit. A password with n-bit entropy requires 2n guesses. That is,

Entropy = log2(number of guesses required).

In information theory, entropy is a measure of unpredictability of information con-
tent. If a set S has N elements, then the entropy of finding an element is log2N .

Example. Determine the entropy of the set of all three digit numbers, {000, 001, 002, ..., 999}.

We note that the value at each position can be the numbers 0 through 9. There-
fore, the size of the set is 103. Entropy is therefore log2(1000) = 9.96 bits.

Entropy can be though of as a guessing game of a person in the classroom,
where any question that has a “yes/no” answer can be asked. The objective is to
determine the person that the mediator is thinking of. The minimum number of
questions required to be certain that one is correct is log2(the number of people).
To accomplish this, we always ask a question that results in the elimination of half
of the possibilities. Entropy is the least number of binary questions that is required
to find the element, assuming that all elements are equally likely. If we consider
sets S1, S2, and S3, all with the same number of elements, then it is clear that all
of these sets have the same entropy.

We note that bits are also used to represent a binary digit in computer systems.
For instance, 8 bit ASCII code. To determine a password’s entropy, we consider
the case with 6 character passwords. If the 6 character password consisted of only
lowercase letters, then we have and entropy of log2

(
266
)
≈ 28 bits. If we included

10 digits, we obtain an entropy of log2
(
(26 + 10)6

)
≈ 31 bits. Including 14 symbols

as well, entropy becomes log2
(
(26 + 10 + 14)6

)
≈ 34 bits. However, passwords must

be easy to remember, and thus usually contain meaningful words. If we consider the
number of english words than an average person uses, this results in around 20000
to 70000 words, resulting in around 15− 16 bit entropy.

To create a strong password, one should avoid using full words and names, as
“dictionary attacks” can be used to guess passwords. It is also advised that one
creates passwords of twelve characters or more with mixed types of characters. One
should also use different passwords for each website, and can also use a password
manager such as LastPass or SplashID to organize and protect passwords. The
password can also be tested for complexity with a password checker. These online
tools can estimate password strength, but are reliable insofar as the underlying
dataset and algorithms used.

Information Security and Privacy 13

4.3 Guess-Verify Attack

An attacker’s goal may be to target a specific user, or any user. It is important
to evaluate security against an any user attack. In guess and verify attacks, the
attacker can simply loop their guessing and verifying either offline or online. In
online guessing, the attacker sends a guess and receives a response in real time.
To counteract this, an account can be blocked after three tries. This is bad for
a forgetful user, but it does slow down the attacker. One can also slow down the
attacker by slowing the response after every time they enter incorrectly. While this
can be effective, it is harder to block when an attacker commands a botnet. We
can also counteract online password guessing by using CAPTCHA’s (Completely
Automated Public Turing Test to Tell Computers and Humans Apart) to detect
bots. In offline guessing, the attacker obtains a password file/table and tries
guesses against that file. If passwords are stored in cleartext (plaintext), then the
attacker has already succeeded. Therefore, passwords should never be stored in
cleartext.

5 January 18, 2017

5.1 Guess-Verify Attack Cont’d

We can encrypt the password file using some secret key. However, the problem
remains that the secret key needs to be stored somewhere. If the attacker has ob-
tained the password file, it is likely they will also have access to the key. Thus,
we may attempt to use an unencrypted password file, but store the password has
instead through storing the hash-function(password). The hash function should
be difficult to invert. That is, given a hash, it should be difficult to find a match-
ing password. A cryptographic hash function is a decent choice, although slower
cryptographic hash functions provide a better alternative.

A hash function maps arbitrarily-sized data to fixed-length data (hash). It is
generally quick, deterministic, and evenly distributed. Depending on its uses, it
can require other properties (for example, a hash table). A cryptographic hash
function is a hash function with extra features to ensure that it is difficult to crack.
It must be infeasible to invert, infeasible to find two (x, y) such that h(x) = h(y),
and it should appear random by passing pseudorandom tests. Essentially, we want
a brute-force search to be the only viable strategy.

Consider for instance, the hash function

h(x) = x mod (10).

It is easy to find an x such that h(x) = n for any arbitrary n. For example,
13, 23, 4543. Now consider the hash function

h(x) = [sum of digits of x] mod (10).

Information Security and Privacy 14

This is marginally better, but it is still easy to determine x : h(x) = n for any n. It
is difficult to define a good hash function.

In old UNIX systems, the password file was given by /etc/passwd. It was world
readable but only root can write. This password file contained user identification,
hashed passwords, and other useful information about the user. This design makes
it fairly easy to obtain a password, since any user has access to it. The UNIX
shadow password system still stores the password file in /etc/passwd. It is also
world readable with only root capable of writing to it. While it similarly contains
user identification, it does not contain actual passwords. The passwords are stored
in a shadow file: /etc/shadow, where only root can read/write. It offers a bit more
security for little to no cost.

In offline dictionary attacks, the attacker first obtains a list of password hashes.
The attacker then uses the guess-verify strategy with optimizations, such as precom-
puting the hash for every word in a dictionary and storing these results in a hash
dictionary. While this is a slow process, it only needs to be done once. Cracking
can now be very fast, and offers the ability to crack all users at the same time. This
strategy of offline attack however, only works if passwords are dictionary words (or
derived from leetspeak). One should recognize that dictionaries could contain com-
mon passwords, and the attacker could also be aided by wikipedia dumps, free/stolen
textbook dumps, facebook dumps, etc. The hash dictionaries used include a space-
time tradeoff to improve running time, since an algorithm can run faster if more
memory is available. Dictionaries can become too big to be practical. The solu-
tion then is to decrease space, and increase running time slightly. We can also use
rainbow-tables, which operate similar to a hash dictionary, with much less space
requirement, but only slightly longer cracking running time.

5.2 Defending Against Guess-Verify Attacks

To compute a hash of a password, we can add some salt first, so that the password
hash becomes

h(salt|password),

where | means concatenation. Salt is a string that is randomly generated when
the password is created and when the password is changed. The salt is not secret
(cannot be), and is stored in the password file together with the hash. Thus, even
when two users have the same password, they will likely have different hashes, thus
making offline dictionaries attacks much more difficult. When we need to verify the
password, we simply need to give the slow hash function the salt and the password, to
compare the result with the stored hashed password. To employ a dictionary attack,
the attacker must now precompute the number of dictionary words multiplied by
the number of possible salts. For instance, if the salt is only 12 bits (around 2 extra
characters), the dictionary size needs to increase by a factor of 4096. Current best
practices use a salt size around 32 − 64 bytes. By using a secure random number

Information Security and Privacy 15

generator, the salt is unique to each user. Along with a good hash function that
is slow and cyptographic based (such as argon2, scrypt, bcrypt, and pbkdf2), this
provides the best defense against dictionary based attacks.

There are many password cracking programs. They can be used for attacks,
or for password recovery. They include Brutus, RainbowCrack, THC Hydra, Cain
and Abel, etc. A good password should not contain any words in the attacker’s
dictionary. It should also contain digits and special characters at an appropriate
length (> 14 letters). The password should be close to random, and yet should be
memorizable. It is therefore advisable to either memorize a 14 word sentence with
letter substitutions, or use a password management program. To convince users to
select good passwords, it is possible to enforce this by running a cracker on it and
rejecting the password if it is cracked.

5.3 Keystroke Logging, Phishing, and Social Engineering

Keylogging can be done through hardware, such as USB keyloggers, electromag-
netic emissions (wired keyboard), wireless sniffing (wireless keyboard), and acoustic
keyloggers, or be accomplished though software, such as trojans, spyware, and vir-
tual machine rootkits.

Phishing attacks aim to obtain sensitive information such as usernames and
passwords by pretending to be a trusted entity via electronic communication. This
is generally accomplished through emails. One must also be aware of pharming,
since it is difficult to tell if the website is fake. It is therefore important to procure
a good home router.

Social engineering is accomplished through psychologically manipulating peo-
ple to disclose confidential information or to perform some actions. There are many
forms, including phishing, pretexting (inventing scenarios or pretending to be of
authority), quid pro quo (offer services), and baiting (through an infected USB).

6 January 20, 2017

6.1 Password Protection

There may be many ways for an attacker to obtain a password file. For instance,
there could be weaknesses in the operating system as a result of not applying the
latest security patches. The cause could also be accidental, as in the case of changing
permissions of /etc/shadow to world readable. The attacker could also obtain the
password file by sniffing passwords through network traffic, or accessing it from a
weak backup. To prevent this, we need to protect from phishing and other social
engineering attacks. This starts by ensuring that the user is aware. This includes not
clicking links in emails. We can also be protected by the server, through keeping our
software updated and implementing security mechanisms. We can also use stronger
authentication measures.

Information Security and Privacy 16

Two-factor authentication asks the user to supply a username and password
along with another form of evidence regarding the user’s identity. This could be
a one time password (OTP). There are problems with this approach, such as
synchronization issues, the loss/theft of a device, and the inconvenience associated.
We can also protect from keylogging by removing the code-keyboard relationship.
This can be accomplished through a virtual dynamic keyboard, whereby the user
must use their mouse to enter the password. If a keyboard is used, the mapping
changes every login. While this protects against keylogging, this only brings about
the issue of mouse-logging and screen capture. We can make use of a scramble pad.

In the following network attacks, an attacker obtains sensitive information from
a network between the user and the server. A sniffing attack is a passive attack,
where the attacker captures the password while it is being transferred through a net-
work, so they may apply a password cracker offline. In a replay attack, the attacker
captures the password and later re-plays the same password through the network to
the server. This is an active attack. Countermeasures to circumvent these attacks
include the use of a one-time password. However, this requires extra hardware. We
can also attempt to use a software only solution, employing a challenge-response
based protocol that adds randomness to each authentication. It provides nonce to
the procedure of authentication, as the password is not sent directly. In this case, a
user would want to prove to the server that they know the password. However, they
do not want to reveal it. In this challenge-response approach, the server provides the
user with a unique challenge to be used as the salt for every authentication request.
This must be a secure random number. The user then applies the cryptographic
hash function to the salt concatenated with the password. This ensures that sniffing
and replay attacks are not possible. Challenge-response systems are used by secure
authentication systems and are usually based on cryptography. CAPTCHA is an
example of a non-cryptographic challenge-response mechanism.

A man-in-the-middle attack (MITM) is an active real-time attack, and is
performed when the attacker is placed in the middle of the communication between
the user and the server. It is a very real problem, since it is fairly easy to execute
in some environments, especially on public networks with low security. MITM can
be accomplished through malicious software such as man-in-the-browser procedures.
MITM are hard to detect and hard to prevent. We can limit its effectiveness by
using https, considering certificate warnings, not downloading random programs,
not clicking on attachments, obtaining a good home router, and using a VPN.
Cryptography alone is often not enough to stop these kinds of attacks. Out-of-
band authentication is usually required.

Password re-use is not a good idea, since an attack on a less secure site may be
performed to use the password on a more secure one. One should be aware that
passwords do not protect against attacks. It is therefore vital to use either strong
passwords, or a password manager that securely stores passwords. It is important
to note however, that password managers are not perfect, and do indeed introduce

Information Security and Privacy 17

new vulnerabilities. Online password recovery for when a user has forgotten their
password also introduces a potential attack surface, since a weak recovery procedure
means an easily obtainable password. Since much of one’s personal information can
be collected on the internet, it may be insecure for password recovery to provide
secret hints, or ask secret questions where the answers could be easily found.

7 January 23, 2017

7.1 Graphical Passwords

While text passwords are the most widely used, it is also the methods with most
techniques devised and most research dedicated. There are drawbacks however. If
the password is easy to remember, then it is easy to guess. If it is hard to guess, then
it is hard to remember. Users tend to pick simple passwords which are vulnerable to
dictionary attacks. If they pick complex passwords, they either need to write them
down or reuse them. To avoid these disadvantages, we can make use of graphical
user authentication (GUA).

GUA can be separated into three main categories:

• Recognition based forms such as Deja Vu require users to memorize a port-
folio of images during password creation and then requires users to identify
their images from among decoys to authenticate. All images are random art
generated from a seed. To create the password, a set of random art is se-
lected and tested against decoys. During authentication, the system presents
multiple sets with decoys. The user then has to select their image. However,
this form of authentication takes longer to memorize and authenticate, and
the server cannot store hashes of passwords. Passfaces use faces in place of
random art. A convex hull click scheme is also a recognition based form
of graphical password that attempts to reduce the shoulder surfing threat.
Registration requires the memorization of around 10 icons, of which around 3
are shown with many decoys when the password is required. The user then
selects the triangle formed by the location of the 3 icons. This is a lengthy
authorization process.

• Recall based forms such as Draw-a-Secret require users to create or draw
something during password creation for later reproduction during authenti-
cation. The creation of a password involves drawing a pattern. During the
authentication process, the user to asked to redraw the pattern. Problems
include shoulder surfing and the small search space.

• Cued-Recall based forms such as Passpoints is the same as recall, with
additional cues to aid the recall process. Registration is performed by clicking
on 5-8 items in an image. When the password is required, the user clicks in
order the same remembered items.

Information Security and Privacy 18

GUA offers potential advantages. For instance, it a set of images is large, it
could result in stronger passwords. It is also more difficult for users to write down
the password. In terms of usability, GUA require a lengthy registration and au-
thentication process that is not feasible for multiple passwords. There is also a
trade-off between tolerance to account for user error and security. It is difficult to
evaluate these forms of security, since we cannot really perform entropy measure-
ments, and shoulder-surfing remains a big threat, with resistant approaches being
more time consuming. There may also be technical issues, such as availability on
mobile devices (due to screen size or touch screen instead of keyboard or mouse)
and bandwidth or storage requirements.

8 January 25, 2017

8.1 Vulnerabilities

We note below the main forms of attacks on passwords:

1. Offline dictionary attacks are used when the attacker attempts to gain ac-
cess to a password file. To prevent against it, one should protect the password
file, detect theft of the file, and reissue new passwords.

2. Specific account attacks are used when the attacker guesses the password
for a particular user. This can be prevented by timeouts and limited trials.

3. Particular user attacks occurs when the attacker uses social engineering
or guesses the password for a particular user. This can be prevented through
user training and the use of complex passwords.

4. Popular password attacks are used by attackers when they guess popu-
lar passwords to attack multiple accounts. One can stop this by disallowing
popular passwords and detecting multiple submission patterns.

5. Workstation hijacking occurs when the attacker waits until the user walks
away from their workstation. To prevent this, one can use automatic screen
locking and advanced user behaviour detection.

6. User mistake exploits are used when the user writes down a password. The
attacker can obtain access through this information. To prevent this, we can
utilize user training or two-factor authentication.

7. Password re-use can be exploited by attackers, since their attack on one
system can provide access to another. We utilize user training to guard against
this.

Information Security and Privacy 19

8. Monitoring is when an attacker uses network sniffing, shoulder surfing, or
keylogging. To protect passwords against this, one can encrypt communication
and add nonce. It would also be beneficial to train users.

There are many different ways to authenticate a user. For instance, we can use
something that the user knows (such as a password, PIN, and answers to prearranged
questions), something that the user possesses (tokens such as barcodes, smartcards,
electronic keycards, or physical keys), something that the user is (static biometrics
such as fingerprints, retina, or face), or something that the user does (dynamic
biometrics such as voice pattern, handwriting, typing rhythm, or gait).

8.2 Token Based Authentication

A physical token is something that the user physically has with them. This could
include SecurID, and student ID card, a credit card, or a passport. This allows for
quick identification and hence authentication. We want this physical token to be
easy to use, cheap to make, but difficult to forge. Some common physical tokens
include barcodes, magnetic stripes, smart cards, RFID, SIM cards, and smartphone
authenticators.

Barcodes are printed labels that are used to improve efficiency in retail. It
uses Automatic Identification and Data Capture (AIDC), and is scanned optically.
The barcode reader scans the pattern and then converts this into ode. Barcodes see
widespread usage for price tags, boarding passes, medical systems, and ID cards.
The Universal Product Code (UPC) is a specific barcode system that most grocery
stores use. 1D linear barcodes encode data in line widths and spacing. In contrast
with the 1D barcodes which can store only limited data, 2D matrix barcodes come
in many forms and hold greater data capacity. Modern phones can read common
varieties, such as QR codes. QR codes are used for advertising, retail packaging,
and virtual stores. They are easy to sync, and can also be used to facilitate two-
factor authentication by providing a time-based one-time password.

However, since they are easy to read and easy to generate, QR codes may lead
to information leakage and forgery respectively. Since QR codes often encode a
URL, this can be exploited to send a user to a hacker’s website. Phishing attacks
on QR codes (QRishing), drive by download exploits such as towelroot, and browser
exploits (such as access to camera and mic, access to browser data and emails, access
to botnets and DDOS) can all be performed. QR codes can also be used to send SMS
to premium numbers. Furthermore, cross-site scripting (XSS) can be exploited.

Information Security and Privacy 20

9 January 27, 2017

9.1 Token Based Authentication Cont’d

Barcodes may also be used for authentication, such as boarding passes that utilize 2D
barcodes. These are created during check in and scanned before boarding. The main
use of this technology is to improve efficiency. Originally, this had no cryptographic
protection. In 2006, a computer science student created the Northwest Airlines
Boarding Pass Generator that allowed users to fake boarding passes. This allowed
access to secure areas of the airport, free upgrades to business class, and avoidance
of the no-fly-list. The site was promptly taken down, and the DHS/TSA devised
a Boarding Pass Scanning System (BPSS). The 2D barcodes now used on
boarding passes included cryptographic protection. This includes a digital signature
generated by the airline (private key) which the TSA can validate when verifying
the signature by using the airline’s public key. We note from this that barcodes
alone do not provide secure authentication or confidentiality.

Magnetic stripe cards were developed in the 1960s and store information in an
easily readable manner. Scanners can easy read debit/credit cards, driving licenses,
and student IDs. These magnetic cards consist of a plastic card with magnetic tape
that contained a plastic film, and was invented by an IBM engineer. These cards
were standardized by the International Organization of Standardization (ISO), and
affected the size of the cards, the location of the stripes, and the data format of the
encoded information. Multiples tracks are used to store the card holder?s full name,
the account number, the format information, the account number, the expiration
date, and information to perform a parity check. In terms of security, they are
similar to barcodes in that readers, writers, and blank cards are cheap to make and
reproduce. To attain security through cryptography, we need additional information
such as a PIN number.

Smart cards include a computer chip inside, with read only and read/write
memory. the microprocessor reads and writes to memory and performs processes.
The technology used is the same as in SIM cards, and is tamper resistant. These
cards are capable of computation and communication, as they can execute protocols.
Smart cards are often used with a PIN for two-factor authentication. They can
be contact, contactless, hybrid, or dual, since these cards are application flexible,
provide strong security and storage, and are resistant to magnetic fields.

There are still vulnerabilities with smart cards however. This can be system de-
sign flaws such as in protocol design and implementation, or through eavesdropping
and communication tampering between the card and the reader, or between the
reader and the backend. For instance, the card can be forged, the communication
with the terminal can be intercepted, the terminal could tampered with or faked,
and the communication between the terminal and the bank could be intercepted.
EMV is a standard system for smart card payments where the PIN is stored on the
card and encrypted. While this sounds good in theory, ATMs still need to generate

Information Security and Privacy 21

a nonce called an unpredictable number for each transaction. If this procedure is
implemented poorly, attacks are still possible.

10 January 30, 2017

10.1 Token Based Authentication Cont’d

Smart cards also store secret keys and perform cryptographic operations. Ex-
tracting keys is difficult, but not impossible through reverse engineering. There are
intrusive methods to achieve this, such as through destroying the card. This
however, is expensive and time consuming. Each card requires the same amount of
effort, but this works on any card, without prior knowledge of hardware or software.
Non-intrusive methods on the other hand, leave the card intact. This can be
time consuming for the first card, but once a method is discovered, it can be applied
to multiple cards. One may benefit from prior knowledge of the hardware/software.
Side channel attacks concern information gained from the physical implementa-
tion of a cryptographic system. For instance, measuring timing, power consumption,
electromagnetic leaks, and even sound.

SIM cards (Subscriber Identity Module) are types of smart cards used in mobile
devices and are issued by a network provider. It stores network specific information
to identify and authenticate the user (including a cryptographic key). It also stores
preferred roaming partners, emergency numbers, and the user’s contact list. Each
SIM card is uniquely tied to a record in the database of subscribers maintained by
the network provider, through the following information:

• ICCID (Integrated Circuit Card ID) is a unique 20-22 digit hardware number

• IMSI (International Mobile Subscriber Identity) is a number unique to each
user thaht identifies the owner?s country, network, and personal information.

• Ki is a 128-bit secret authentication key that is unique to each user. It is
used to authenticate a phone to a mobile network.

Many cards also store a personal PIN that is required to access information on
the card and a PUC (Personal Unlock Code). According to the GSM Challenge
Response Protocol, to connect to a network through the SIM card, the phone first
sends the IMSI to the base station. The base station then looks this up in its data
base and sends back a challenge C, which is a random 128-bit number. The phone
computes and sends back a response R where

R = A3(C,Ki),

where A3 is a proprietary encryption algorithm. Thus, R is an encrypted version of
C. The base station then computes its own response R′. If R = R′, then the phone
is authenticated. Communications between the subscriber and the base station can

Information Security and Privacy 22

be encrypted. GSM uses proprietary cryptographic algorithms such as A5/1, A5/2,
and A5/3. However, they have all been reverse engineered and found to be weak.
Security is obtained through obscurity, but this does not work.

Radio Frequency Identification (RFID) are small transponders that trans-
mit identification information. They provide functionality similar to barcodes. They
are composed of a chip that stores information and performs basic computations,
and a coiled antenna that receives and transmits information while also supplying
power (passive chip). It can also include a battery (active chip). The range is from
a few centimeters to several meter. While barcodes are lighter, cheaper, and easy
to create, RFID allow for potentially greater scan distance, for faster scans even
outside of line of sight, greater security, increased durability, and increased data
capacity. RFID can also update stored information.

Some uses of RFID include product tracking and tagging, animal tracking, car
key fobs, book sorting in libraries, and electronic toll transponders. However, RFID
are not without their share of privacy and security concerns. Furthermore, these
problems are difficult to solve since one must consider disciplines of signal processing,
hardware design, supply-chain logistics, privacy rights, and cryptography. Some
attacks include sniffing, cloning, modifying, and disabling.

ePassports are modern passports that have an embedded RFID chip. The
Canadian ePassport for instance contains a passive chip with a 10cm scanning dis-
tance. It stores personal information and a digitized picture, but does not yet
contain biometrics. To prevent from tampering, it is equipped with passive au-
thentication (PA). During production, data is digitally signed by the government,
and during verification, the data signature is verified. To prevent unauthorized
reading, it features basic access control (BAC) for a scan distance of at most 10
cm. The birth data, expiration date and passport number form a key which needs
to be fed into the reader to access the data. To prevent cloning, it includes active
authentication (AA) where a unique public/private key for each passport RFID
chip is created. The private key cannot be read and therefore cannot be copied.
Challenge-response protocol verifies that the passport has the correct private key,
and the public key is signed by the government and included in the PA.

11 February 1, 2017

11.1 Biometric Authentication

Biometric authentication is an attempt to authenticate an individual based on
unique physical characteristics and is generally based on pattern recognition. Com-
pared to passwords and tokens, biometric authentication is both technically complex
and expensive. While it is used in a number of specific applications, biometrics has
yet to mature as a standard tool for user authentication to computer systems. This
may be due to the varying levels of cost for a comparable level of accuracy in bio-

Information Security and Privacy 23

metric authentication. A number of different types of physical characteristics are
either in use or under study for user authentication. This includes:

1. Facial characteristics are the most common means of human-to-human
identification. Thus it is natural to consider them for identification by com-
puter. The most common approach is to define characteristics based on relative
location and shape of key facial features, such asthe eyes, eyebrows, nose, lips,
and chin shape. An alternative approach is to use an infrared camera to pro-
duce a face thermogram that correlates with the underlying vascular system
in the human face.

2. Fingerprints have been used as a means of identification for centuries, and
the process has been systematized and automated particularly for law en-
forcement purposes. A fingerprint is the pattern of ridges and furrows on
the surface of the fingertip. Fingerprints are believed to be unique across the
entire human population. In practice, automated fingerprint recognition and
matching system extract a number of features from the fingerprint for storage
as a numerical surrogate for the full fingerprint pattern.

3. Hand geometry systems identify features of the hand including shape, lengths
and widths of fingers.

4. Retinal pattern is the unique pattern formed by veins beneath the retinal
surface is. A retinal biometric system obtains a digital image of the retinal
pattern by projecting a low-intensity beam of visual or infrared light into the
eye.

5. Iris structure is another unique physical characteristic that can be used for
identification.

6. Signatures reflect the unique style of handwriting of the individual. However,
multiple signature samples from a single individual will not be identical. This
complicates the task of developing a computer representation of the signature
that can be matched to future samples.

7. Voice patterns are more closely tied to the physical and anatomical charac-
teristics of the speaker. Nevertheless, there is still a variation from sample to
sample over time from the same speaker, complicating the biometric recogni-
tion task.

The cost vs. accuracy of these biometric systems can be compared. For instance,
passwords are among the cheapest solution, and can range from low to high accuracy.
Voice, face, signature, and hand offer low accuracy at increasing cost, fingerprint
and retina offer medium accuracy at increasing cost, and iris offers high accuracy at
a great cost. To achieve authentication, the system needs to compare whether the

Information Security and Privacy 24

user matches with the biometric data given. If there is a one-to-one match, then
the user is authenticated. For identification, the system must determine to whom
the biometric information belongs. This involves one-to-many matching.

For biometric applications, we generally require the characteristic possess uni-
versality (every person should have this characteristic), distinctiveness (each person
should have a noticeable difference in their characteristic), permanence (the charac-
teristic should not drastically change over time), and collectability (the characteristic
should have the ability to be effectively determined and quantified).

11.2 Fingerprint and Iris Scanning

In fingerprint scanning, a reader takes a sample of one’s biometric information
and stores this into a feature vector of some form. A comparison algorithm is
then used to determine whether or not this matches with a reference vector. In
fingerprint scanning, minutia points are located to produce a minutia map that is
converted into a data stream. The position and orientation of ridges on the finger
are noted. In a typical minutiae-matching algorithm, the algorithm first uses local
minutiae descriptors to coarsely align two fingerprints and then computes a global
similarity (match) score based on minutiae correspondences. The final true or
false decision of whether this fingerprint matches the user is based on comparing this
similarity to some threshold. There can be two types of errors: false match and
false non-match. The accuracy is determined by comparing either the false match
ratio, and the false non-match ratio. The threshold can be adjusted to increase the
accuracy of one at the cost of the other. Note then that an increased threshold can
lead to greater security, but at the cost of decreased convenience. Iris recognition
is accomplished by segmentation of the iris, then the normalization of this image.
This is converted into data for the iriscode, which can later be compared.

It is relatively simple to forge a fingerprint out of a glue-like substance if a real
finger is available. It is also theoretically possible to create a fake fingerprint from
stored biometric data. The same is true of iris scans. To combat fake fingerprints,
liveness detection can be used by monitoring measures of vital signs in the finger,
pulse, perspiration, deformation, and odors. Similarly, irises can be checked for
pupil dynamics.

12 February 3, 2017

12.1 Handwriting Biometrics

Biometrics can be distinguished as physiological, as in the case of fingerprints,
iris, face, and hand geometry, and has behavioural. Behavioural is separated into
passive, which includes typing pattern, walking gait, and signature, and active, as
in response to a challenge, the playing of a game, or the act of writing.

Information Security and Privacy 25

Handwriting biometrics is advantageous because it is familiar, has historical
acceptance (since it is similar to signatures), and its capture is not invasive. This
process can be either static or dynamic, depending on whether a picture of the
signature is taken or the entire process is taken. In both cases, a digitizer is required.
Static methods measure the width, height, aspect ratio, and area. However, static
handwriting is not secure. Dynamic methods on the other hand take into account
pen timing (such as when the pen lifts), and is a promising area of research. However,
this requires consistency on part of the user.

To initiate dynamic handwriting biometrics, the user writes sample phrases.
Each sample is represented by a set of attributes such as shape (static analysis),
and dynamics (pressure, timing, velocity, acceleration, positions). This is combined
into a single feature vector that is representative of the user’s handwriting style.
During verification, the user is asked to write a phrase (challenge) where attributes
are collected from a digitizer. This is matched against the stored feature vector.

12.2 Biometric Assessment

Note that there may also be multi-factor multimodal biometric systems that simul-
taneously use multiple biometrics to authenticate a user. Biometrics is advantageous
since there is no need to memorize, or a need to carry a token. It could also poten-
tially provide strong identification and cannot easily be shared. However, it cannot
be changed, and there may be privacy concerns. There could be covert collec-
tion of publicly accessible data such as face scans, fingerprints, and voice. This
violates the privacy principle that people should be informed when their personal
information is being collected. Secondary information can also be of concern,
since an iris scan can reveal a person’s health, and a fingerprint can reveal a person’s
employability. This violates the principle that personal information should only be
collected for a clearly identified purpose. Cross-matching is another cause of con-
cern, since the data could be collected for one purpose, and later used for a different
purpose. This goes against the principle that personal information should only be
used for the purpose for which it was collected.

The Privacy Impact Assessment is a process intended to help organizations
consider the impact that a new or substantially modified initiative can have on peo-
ple’s privacy, especially when personal information is being collected. The process is
mandatory in the public sector. Federal institutions proposing a program, policy or
service with implications for privacy are required to submit a Privacy Impact Assess-
ment for review. Advice and recommendations for strengthening privacy safeguards
are then provided to the institution.

Information Security and Privacy 26

13 February 6, 2017

13.1 Access Control

Information security is about preventing unwanted access, but it is often easier to
define in terms of what we wish users to be able to access. For instance, a user Bob
may create a file, edit this file, and delete their file. Another user Alice can read her
own files, and the admin can delete Bob’s files and log him out. Access takes the
general form of

Subject can perform an Action on some Object.

Objects are any resources to be protected, such as files, memory, devices, and
processes. Subjects are the users interacting with the system. Typical classes
include the owner, group, or world. Processes interact with the system on the user’s
behalf. Actions or Access Rights are the possible interactions on objects by
subjects. This can depend on the object types, and includes operations such as
read/write on files and the ability to stop processes.

To implement access control, one may write a function isAllowed that takes
as arguments a subject s, an object o, and an action a. There can then be some
implementation such as a lookup in a database that returns true if s is permitted
to perform a on o, and returns false otherwise. To complete this type of imple-
mentation, the access control language must be expressive, and the policy must be
enforceable.

Access control policies fall under three main categories:

1. Discretionary Access Control (DAC) is based on ownership and is the
most common policy. The owner can do anything, and has the right to provide
or remove access rights. This is often accomplished using an access matrix.
One dimension of this matrix consists of identified subjects that may attempt
data access to the resources, while the other dimension lists the objects that
may be accessed. Each entry in the matrix indicates the access rights of a
particular subject for a particular object. This is not very practical since the
matrix can get big yet sparse. Instead, we can use access control lists or
capability lists to list the users and their permissions under each file, or list
each file along with the permissions of the associated user respectively. An
authorization table sorted by subject results in the capability list, whereas
an authorization table sorted by object results in an access control list.

2. Mandatory (MAC) is based on clearances and sensitivity levels. This is
popular in the military, with clearance labels such as high, low, and no, or top
secret, secret, and public. These are automatically defined by the system, as
opposed to DAC where the user defines the permissions.

Information Security and Privacy 27

3. Role-Based (RBAC) is based on roles. As opposed to assigning permissions
to an individual, permissions are assigned based on roles that an individual
may have.

13.2 Unix/Linux File System Security

This is an example of discretionary access control. There is an infrastructure of
filesystem access control for files and directories, mounted filesystems (/mnt/profs),
devices (/dev/cdrom, /dev/usb, /dev/fb0), sockets, pipes, and memory (/sys and
virtual filesystem mapping kernel subsystems). The Linux file system is a tree of
directories, where each directory has links to zero or more files and directories. Every
file is owned by a user and a group, with permissions often displayed in compact
10-character notation. That is, a d or a − depending on whether we are dealing with
a directory or file, followed by the 9 permission characters, followed by the owner,
then the group owner.

Remark. The owner can always change the permissions.

Each unique user has an identification number (uid), where 0 is root (superuser).
A member of a primary group is identified by a group ID. Every user belongs to
a specific group, with the permissions offering 12 protection bits. 9 bits specify
the read, write, and execute permission for the owner of the file, members of the
group, and all other users (world). The owner ID, group ID, and protection bits are
part of the file’s inode. We distinguish permission for files with that of directories
in that directories are preceded by d, while files are preceded by − before the 9
bits of permission for each entity are specified. For directories, permission bits are
interpreted slightly differently. The read bit allows listing of file/directory names,
the write bite allows for the creation and deletion of files in the directory, and the
execute bit allows entering the directory and obtaining properties of files in the
directory. Note that not all combinations make sense however, as in the case of
reading without executing.

The permission check algorithm for a given user and filepath can be deter-
mined by first checking all parent directories in the path for execute permission.
Then, we check whether the user is the same as file.owner. If these match, then
we use file.userPermissions. Otherwise, if file.group is in user.groups, then
we use file.groupPermissions. If these cases do no match, then we simply user
file.worldPermissions.

In the Linux file system, Set User ID (SetUID) is only on executable files.
The system temporarily uses rights of the file owner in addition to the real user?s
rights when making access control decisions. This enables privileged programs to
access files/resources not generally accessible. Set Group ID (SetGID) on exe-
cutable files has a similar effect to SetUID, but for groups. On directories, new
files/subdirectories will have the same group. The Sticky Bit (12th bit) when
applied to a directory, specifies that only the owner of a file in the directory can

Information Security and Privacy 28

rename, move, or delete that file. This is usually set on /tmp and /scratch type
directories. Root refers to the superuser with UID = 0. They are exempt from
usual access control restrictions, and have system-wide access. This is dangerous,
but necessary, and actually acceptable with good practices. Becoming root requires
a password:

• su requires the root password. This command changes the home directory,
PATH, and shell to root. This also leaves environment variables intact.

• su - command acts as if one is logged in as root.

• su - user allows one to become someone else < user >.

• sudo command requires the user password. This allows one to run a com-
mand as root. This is the recommended option, since it leaves an audit trail.

Permissions are changed with chmod or via a GUI. Only the file owner or root
can change permissions. If a user owns a file, the user can use chgrp to set its group
to any group of which the user is a member. root can change file ownership with
chown (and can optionally change the group in the same command). chown, chmod,
and chgrp can take the −R option directly after the keyword to recursively apply
changes through subdirectories. For chmod, any files for which the permissions are
to be applied are specified at the end. If no files are specified, this means all files are
affected. + followed by read, write, or execute indicates the addition of permission,
while − indicates removal of permission. This is optionally preceded by u, g, or o
to indicate whether this affects the owner, group, or world. If it is not preceded by
any combination of the above, then this applies to everyone. chown is specified by
naming the new owner of the following directory.

While the Unix standard/basic permissions are great, it is not perfect. It is
limiting and not expressive enough. For example, user Bob cannot easily give user
John read access to his files. Most Linux based operating systems support POSIX
ACLs, which build on top of traditional Unix permissions. Several users and groups
can be named in ACLs, each with different permissions. This allows for much finer-
grained access control. Unix standard is also built such that each ACL is of the
form type : name : rwx where type is the user or group, name is the user name
or group name, and rwx refers to the bits set. This means that setuid, setgid and
stickybits are not possible.

The commands getfacl lists the ACL for a file, while setfacl assigns ACLs to a
file/directory. Any number of users and groups can be associated with a file. This is
accomplished by read, write, and execute bits. A file does not need to have an ACL.
A directory can have an additional set of ACLs, called default ACLs. Default
ACLs will be inherited by files and directories created inside of the main directory.
Subdirectories inherit the parent directory’s default ACLs as both their default
and their regular ACLs. Files inherit the parent directory’s default ACLs only as

Information Security and Privacy 29

their regular ACLs, since files have no default ACLs. A logical AND operation is
performed on the inherited permissions for the user, group, and other classes with
the traditional Unix permissions specified in the file creation procedure.

14 February 8, 2017

14.1 NTF

Each file and directory in this file system has an owner and zero or more access
control entities (ACE). The ACE format is:

<principle ><operation>(allow|deny),

where principal is the user or group, and operation is read, write, execute, full
control, list, or modify. ACEs support inheritance, since the directory ACEs can
propagate to children. This is similar to ACLs in UNIX, but NTFs support deny
ACE entries, while UNIX only has allow ACL entries. UNIX is also limited in that
only members of the group can have permissions different from world, and there is no
way to specify permissions for a single user other than the owner. Furthermore, the
NTF file permission algorithm checks only the ACEs of the file, while UNIX checks
the entire path. While NTFs are more expressive, they are also more complicated.

15 February 10, 2017

15.1 Role Based Access Control (RBAC)

Role based access control is a modified DAC system. Instead of treating each
subject individually, they are assigned roles. The permissions are then assigned
to the roles. This is the basic principle behind RBAC. This system benefits from
the fact that it is easier to manage a large number of users, and easier to align
with company policies. RBAC models can be viewed as an evolution of the group-
based permissions in file systems. It allows easier implementation of the principle
of least privilege. An RBAC system is defined with respect to an organization. The
organization has a set of resources such as documents, print services, and network
services, and a set of users, such as employees, suppliers, and customers.

RBAC is comprised of the following components:

• User: A user is an entity that wishes to access resources of the organization
to perform a task. Usually, users are actual human users, but a user can also
be an application.

• Role: A role is defined as a collection of users with similar functions and
responsibilities in the organization. Examples of roles in a university may
include student, alumni, and faculty. A user may have multiple roles, but

Information Security and Privacy 30

often only one active role at a time. Roles and their functions are often
specified in the written policies of the organization. The assignment of users to
roles reflects the status of the user within an organization. Role re-assignment
can occur, such as when an employee is getting hired/fired, or when a student
is getting admitted/graduating.

• Permission: A permission describes an allowed method of access to a re-
source, For instance, reading a file, writing to a file, printing to a printer, etc.
Each role can have multiple permissions associated with it.

• Sessions A session consists of a user and an active role. A user may have
multiple sessions activated, and in each session a different active role.

Hierarchical RBAC refers to the structuring of roles in a hierarchy similar to
an organization chart. A role R1 can inherit role R2, meaning that R1 includes all
permissions of R2. This is denoted as

R1 > R2.

This implies a partial order among the roles. When R1 > R2, we say that R1 is
senior to role R2, and that role R2 is junior to role R1. In a company for instance,
the role manager inherits the role employee, and the role president inherits the
role manager. Thus,

president > manager > employee.

Note that this hierarchical structure does not have to be linear. There can be
multiple branches in either direction.

Constraints are used to provide a means to adapting RBAC to the specifics of
administrative and security policies of an organization. Constraints are defined as
a relationship among roles, or conditions related to roles. There are three general
types:

1. Mutually Exclusive Roles means that a user can only be assigned to one
role in a set (separatino of duties). A permission can be granted to only one
role in the set.

2. Cardinality means that either there is a maximum number of permissions
per role, or there is a maximum number of users per role.

3. Prerequisite Roles means that a user can be assigned to a particular role if
the user is already assigned to a prerequisite role.

Information Security and Privacy 31

15.2 Attribute Based Access Control (ABAC)

Attribute based access control can be considered an evolution of RBAC. In-
stead of roles with permissions, ABAC has policies involving attributes. Subjects,
actions and objects all have attributes. For instance, the user may have attributes
age and clearance, file may have attributes sensitivity, and the environment can
have the attribute currentT ime. Policies are boolean statements expressing what
is allowed and what is not allowed. For instance, a policy could check whether
user.clearance > file.sensitivity. In the event that it is, the it will allow the usr
to read access the file.

In comparing ABAC, RBAC, DAC, and MAC, note that RBAC is flexible enough
to implement DAC or MAC. DAC with ACLs and groups can emulate with a simple
RBAC. ABAC can implement RBAC (and thus implement DAC and MAC). ABAC
is the most expressive of the four, and also the most complicated.

16 February 13, 2017

16.1 Midterm Review

Discussed midterm format and second assignment questions.

17 February 27, 2017

17.1 Introduction to Cryptography

So far, we have seen cryptography in passwords tables (hashing, encryption), in au-
thentication challenge-response protocols (pseudorandom number generator, hash-
ing), ePassports (encryption, digital signature), barcodes on boarding passes (en-
cryption, digital signatures), sending card information over networks (encryption,
digital signatures), and SIM cards (encryption, digital signatures). In everyday life,
cryptography is used when making calls, using smartphones, installing software, us-
ing credit/debit cards, opening car or garage doors, online banking, online shopping,
email, checking grades, and surfing the web.

However, cryptography does not solve all problems. Bad implementations, social
engineering, malicious code, and denial of service attacks are some problems that
we still have to deal with. Cryptography mostly deals with confidentiality and
integrity, and lesser so with availability. While the advantage of cryptography is
that it seems to be able to do things that look impossible, it can also provide a
false sense of security. It is important to understand the limits of cryptography, and
even the best designs can be poorly implemented. Snake oil cryptography is any
cryptographic method that is considered to be fraudulent.

Cryptography, loosely translated as “secret writing”, is the practice and study
of techniques for secure communication in the presence of third parties called adver-

Information Security and Privacy 32

saries. The Fundamental Tenet of Cryptography states that if lots of smart
people have failed to solve a problem, then it probably won’t be solved soon. We
make use of the following terminology:

• Plaintext is the original message (readable).

• Ciphertext is the encrypted message (gibberish).

• Cipher is an algorithm used to encrypt/decrypt a message (also sometimes
spelled cypher).

• Key is a secret used by the cipher to encrypt/decrypt a message.

• Cryptography can be thought of as the inventing of new ciphers.

• Cryptanalysis is the breaking of ciphers.

• Cryptology consists of cryptography and cryptanalysis.

Encryption is used to convert plaintext into ciphertext. Decryption is used to
convert ciphertext to plaintext. It is okay for a cipher to be public. In fact, it
is recommended. More eyes will find weaknesses sooner. Algorithms tend to be
reverse-engineered anyways. According to Kerckhoff’s principle, which is the
second rule of six on practical cipher design, the design should not always require
secrecy, and it should not be a problem if it falls into enemy hands. While it is okay
for the cipher to be public, it is not okay for the keys to be public. The keys need
to be secret, since the key is needed to decrypt. If one does not have the key, it is
difficult to break the system.

17.2 Ciphers

Ciphers should be fast in order to be practical. The security of a cryptographic
method is measured by how hard or easy it is to break. Generally, slow does not
mean that it is secure.

Suppose a combination lock needs 3 numbers, each in the range from 1 to 40
inclusive. The number of possible combinations is 403 = 64000. At 5 seconds per
attempt, the worst case is 3.7 days to break, the best case is 5 seconds to break, and
the average case is 1.85 days to break. Now, suppose the same combination lock
needs 4 numbers in the same range. The number of possible combinations is now
404 = 2560000. At 6 seconds per attempt, the worst case is 178 days to break, the
best case is 6 seconds to break, and the average case is 89 days to break. This is all
assuming that brute force is the best attack.

The Caesar cipher is a type of shift cipher with shift = 3. The shift cipher
is a subtype of the substitution cipher. For the shift cipher, the encryption function
is

Ek(x) = (x+ k) mod 26,

Information Security and Privacy 33

while the decryption function is

Dk(x) = (x− k) mod 26.

The secret key of the cipher is k. When we are asked to recover the plaintext without
knowing the secret key, we can try a brute force attack. For secure ciphers,
brute force is the best option available for recovering the plaintext. Brute force
attacks cannot be prevent, but they can be made more difficult by increasing the
number of keys.

A monoalphabetic cipher is an arbitrary mapping of a character to another
character via a substitution alphabet. A substitution alphabet can be any per-
mutation of an alphabet. For instance, a rearrangement of the alphabet would be
one such substitution alphabet. Shift ciphers are a subset of monoalphabetic ci-
phers. There is always some mapping. The total number of mappings would be
26! ≈ 4 ∗ 1026. At 1000000000 tries per second, the correct mapping could be found
in 12700000000 years. This sounds good, but by using frequency analysis, this
breaks almost any substitution cipher. Frequency analysis uses statistical properties
of a language to decrypt the ciphertext. Some letters and words are more common
than others, and some words are very likely or even expected to appear in ciphertext
(cribs). This can be used to break most classical ciphers.

Polyalphabetic ciphers substitute each letter with multiple different charac-
ters, and make use of multiple substitution alphabets, while polygraphic ciphers
substitute groups of letters with other groups of letters, and make use of multiple
substitution groups. These attempt to make statistical analysis more difficult. How-
ever, these are still breakable with more complicated statistical analysis. Monoalpha-
betic, polyalphabetic, and polygraphic ciphers are examples of substitution ciphers.
Mechanical substitution ciphers include ENIGMA and SIGABA.

18 March 1, 2017

18.1 Ciphers Cont’d

Transposition ciphers, also known as permutation ciphers permute the plain-
text characters. For instance, for a given plaintext, it can be arranged horizontally
in a square. The ciphertext is then taken by vertically reading the letters of the
square. By themselves, transposition ciphers are susceptible to statistical analysis.
However, combining substitution and permutation ciphers can lead to very strong ci-
phers. Several rounds of repeated substitution and permutation can be very strong.
This is the basis of many modern symmetric ciphers.

The Vigenere cipher is similar to the Caesar cipher, but uses multiple shift
values based on position. The key is a string that is repeated for the length of the
plaintext. The plaintext is then shifted by the corresponding value in the key to
obtain the ciphertext. The Vigenere cipher is based on disguising the frequency

Information Security and Privacy 34

of letters, since the same letter maps to different letters. This is an example of a
polyalphabetic cipher. The primary weakness is the repetition of the key during
encryption and decryption, since the key needs to be stretched to be the same size
as the plaintext. Given enough data, we can perform statistical analysis. That is,
when the plaintext is very long (much longer than the key), or when we have many
pairs of plaintext and ciphertext encrypted with the same key. Cryptanalysis then
consists of two steps: figuring out the key length and then solving the multiple
Caesar cipher problem.

If the key is a length of 1 (a single letter), then the Vigenere cipher is simply
the Caesar cipher. If the key length is equal tot the length of the plaintext, then we
have a fairly strong cipher unless we keep reusing the key for multiple encryptions.
The attacker could obtain many pairs of (plaintext, ciphertext) to cryptanalyze in
the case that the key is used multiple times. If the length of key and plaintext are
the same and the key is only used once, this is very secure, but the Venona project
where the US and UK decrypted Soviet communications to identify spies has shown
that the key can still be guessed. In the case the key and plaintext length are the
same, the key is random and only used once, then we have the most secure cipher
known.

The One-time pad cipher (OTP) was invented in 1882 by Frank Miller, and
then re-invented and patented by Gilbert Vernam in 1919. It is essentially a Vigenere
cipher where the key length matches the text length, the key is only ever used once
(it is never re-used since a new key is created for each plaintext), and the key is
random. This can be implemented using modular addition as in Caesar and Vigenere
ciphers. However, it is usually implemented using XOR since this is much faster.
The encryption and decryption functions are

Ek(x) = plaintext⊕ key,

Dk(x) = ciphertext⊕ key,

where ⊕ is bitwise XOR. XOR is both the encryption and decryption algorithm.
It works because

Dk(x) = ciphertext⊕ key = (plaintext⊕ key)⊕ key = plaintext.

The OTP cipher cannot be cracked. Given a ciphertext, any plaintext is equally
likely since there exists a unique key for any guessed plaintext. The ciphertext pro-
vides no information to the cryptanalyst except the length of the message. Thus, the
one-time pad provides perfect secrecy. It is information-theoretically secure,
which is also sometimes referred to as unconditionally secure. It is immune to
brute-force attacks and even with infinite computational power, it cannot be broken.
The drawback of the OTP cipher is that it is impractical.

Although theoretically secure, there are many practical problems:

Information Security and Privacy 35

1. Since the key length has to be the same length as the plaintext, the key must
be shared in secrecy. If used for communication, we might as well deliver the
message in plaintext using the same channel as used for sharing the key.

2. The key must be truly random, so it cannot be predictable. However, due to
its length, this can pose a significant problem.

3. The key also must be securely destroyed after use. This is not as easy as it
sounds, since keys can be extracted from hard drives, RAM, SSD, and optical
disks.

Despite these significant practical issues, OTP has real applications. For in-
stance, in teaching cryptography. It is also quite easy to perform by hand, requiring
no power or trusted computers. Most modern ciphers are not feasibly performed by
hand. There are some uses when the key can be shared beforehand. Furthermore,
this provides motivation for more advanced ciphers, such as stream ciphers.

19 March 3, 2017

19.1 Measures of Security

Unconditionally secure occurs when ciphertext does not contain enough infor-
mation to deduce the plaintext. This is the ultimate goal of cryptography, since
the ciphers are based on provably unbreakable algorithms. The one-time pad for
instance is unconditionally secure. In fact, it is currently the only known cipher in
this category. However, the one-time pad requires a one-time secret key with
the key length being the same length as the message. Encryption and decryption
can be performed (for instance, using binary XOR with the plaintext and key for
encryption, and using binary XOR with the ciphertext and key for decryption).
Cryptanalysis is impossible, but this is not practical. There are other candidates,
but they have yet to be proven unconditionally secure.

Computationally secure occurs when the time required to break the cipher
is too long. That is, it exceeds the useful lifetime of the information protected. The
cost is therefore too high compared to the value gained by obtaining the information.
This assumes hat the attacker has limited computational power and is based on
algorithms that have been traditionally hard to break. There are some issues with
this definition, such as how to estimate useful lifetime, how to estimate the value of
information, and how to estimate how long it would take to break the cipher. There
could be overestimates of lifetime and value, along with underestimate of how long
it would take to break.

19.2 Types of Cryptography

The following are the main forms of cryptography:

Information Security and Privacy 36

1. Cryptographic Hashing requires no keys at all, since the cryptographic
hash functions are simply computationally expensive.

2. Secret Key requires one key remain secret. The key is often shared for
communication purposes, as in the case of symmetric keys. This is also known
as symmetric cryptography.

3. Public Key requires two keys, where one is public and known to the world,
while the other is private. The private key is secret, but we do not call it “se-
cret” to avoid confusion. This is also known as asymmetric cryptography

19.3 Cryptanalytic Attacks

The attacker’s goal is ultimately to recover the key. However, recovering the plain-
text is often sufficient, and learning something about the key or plaintext allows for
partial information extraction. The more information the attacker has, the more
likely they are to succeed. Assuming that the attacker knows the ciphertext (or a
set of ciphertexts), attacks can be based on the following forms:

• Ciphertext only is when the attacker knows nothing in addition to the ci-
phertext.

• Known plaintext is when the attacker also knows one or more plaintext-
ciphertext pairs.

• Chosen plaintext is when the attacker also knows the plaintext-ciphertext
pair, but for a plaintext chosen by the attacker.

• Chosen ciphertext is when the attacker also knows the plaintext recovered
from a chosen ciphertext.

• Chosen text is when the attacker also knows the ciphertext for a chosen
plaintext, and the plaintext for a chosen ciphertext.

20 March 6, 2017

20.1 Cryptographic Hash Functions

As we recall, a hash function is a function that maps data of arbitrary size to data
of a fixed size. The output of a hash function is called a hash value or hash and
is noted as

h(x) = y,

where x is the data and y is the hash. The hash function must be deterministic.
That is,

x1 = x2 =⇒ h(x1) = h(x2),

Information Security and Privacy 37

h(x1) 6= h(x2) =⇒ x1 6= x2.

However, this does not mean that

h(x1) = h(x2) =⇒ x1 = x2.

This is because collisions are possible and unavoidable. Other desirable properties
include speed and a uniformly distributed hash. Depending on its uses, it can require
other additional properties.

Cryptographic hash functions are hash functions with additional properties.
The input is referred to as the message while the output is called the message
digest (or digest, fingerprint, or even checksum). It should be infeasible to invert
(brute force only), and a small change in the message should result in a large change
in the hash. It should also be infeasible to find collisions, such as finding to (x, y)
such that h(x) = h(y). Furthermore, a cryptographic hash function should appear
random by passing pseudo-random tests.

The main application is message integrity and authentication. The problem
concerns the means by which the recipient may verify the integrity of the message.
Before sending the message, we compute the digest of the message. We then send
the message and include the digest (m, d). When the recipient receives the message
and digest, they compute their own digest d′ = h(m). The recipient may then
compare their digest with the received digest to verify that d = d′. However, this
does not guarantee that the message has not been verified. For instance, a MITM
attack could substitute both the message and the digest with (m′, d′).

Cryptographic hash functions must be immune to all known cryptanalytic at-
tacks, such as pre-image attacks, second pre-image attacks, collision attacks, and
additional attacks such as extension attacks and similar message or similar digest
attacks. “Immune” is related to computational security. The higher the value of in-
formation, the more the attacker will spend to obtain that information. Hash values
of 256 bits should be able to defend against most practical brute-force attacks.

Pre-image resistance is related to the fact that a cryptographic hash function
should be non-invertible. For a given digest of y, it should be difficult to find any
message x such that

h(x) = y,

where x is the pre-image of y. Difficult in this sense simply means that a brute
force attacks is the only viable way to determine x from y. For most hash functions,
brute force attacks are of the complexity of 2n, where n is the bit length of y. For
example, consider a 128 bit hash function. The digest is necessarily 128 bits long.
The attacker would need to perform around 2128 ≈ 3.4∗1038 evaluations. Assuming
one trillion evaluations per second, this would take around 1019 years. If the digest
is 129 bits long, then the attacker would need to perform many more evaluations.
Second pre-image resistance states that for a given message x, it should be
difficult to determine y such that

h(x) = h(y).

Information Security and Privacy 38

If an attacker knows a message, it should be difficult for them to find another
message that has the same digest.

Collision resistance states that it should be difficult to find any pair (x, y)
such that

h(x) = h(y).

Furthermore, it should be difficult to find any two messages that have the same
digest. Collision attacks alone are usually without practical applications, but they
can signal a weakness in the hash function. Collision resistance implies second pre-
image resistance, while second pre-image resistance does not guarantee pre-image
resistance. Finding collisions via brute fore does not have a complexity of 2n. For
instance, consider the birthday problem. The number of hash values needed to find
two collisions with probability p is given as

n(n,H) ≈

√
2H ln

(
1

1− p

)
,

where H is the number of possible hash values. For instance, if we want p = .5,
then n(0.5, H) ≈

√
H. A hash function with an n bit digest will only provide n/2

bits of security for collision resistance assuming this is an ideal hash function. If we
want 128 bits worth of security against collision attacks, we need a hash function
with at least 256 bits of digest.

Message checksum requires that the integrity of the message is checked for acci-
dental corruption. Usually, it is computed using a non-cryptographic hash function.
For instance, this could be of the form

checksum = crc32(message).

Message digest is similar to checksum, but it is calculated using a cryptographic
hash function, and could be of the form

digest = SHA3(message).

The digest detects malicious modifications. However, it does not protect against
MITM if the message and digest are both susceptible to tampering. It is still useful
for file checksums. The message authentication code (MAC) is similar to digest
but can only be computed and verified using a secret. A possible implementation is

MAC = h(secret|message).

MAC confirms the integrity of the message and the authenticity of the message. In
this way, it can protect against MITM attacks. MAC is used to compute and verify
the tag of a message. A keyed-hash message authentication code (HMAC) is
a particular implementation of MAC. It is defined in RFC 2104, and is currently the
most popular MAC. It defends against length-extension attacks. It is of the form

HMAC = h(k1|h(k2|m)),

Information Security and Privacy 39

where m is the message, k1 and k2 are two different versions of the secret, and
requires the application of h() twice. For instance, this could be

HMAC(m, k) = h(XOR(k′, opad)|h(XOR(k′, ipad)|m)),

where h is the cryptographic hash function, m is the message, k is the key, k′ is
derived from k by making it the same length as input block size of h() either by
padding with 0’s if short or by k′ = h(k) if it is too long, opad is 0x5c5c5c5c...5c,
and ipad is 0x36363636...36. Just about any cryptographic hash function can be
used as h. Note that SHA3 does not require HMAC, since a simple scheme digest
of sha3(k|m) is sufficient.

21 March 8, 2017

21.1 Cryptographic Hash Function Applications

The Message-Digest Algorithm 5 (MD5) was developed by Ron Rivest in 1991.
It uses 128-bit hash values. It is still widely used in legacy applications, even though
it is generally considered insecure. Various sever vulnerabilities were discovered,
with the first indications in 1993, and full collisions in 2004. Chosen prefix collision
attacks were found by Marc Stevens, Arjen Lenstra, and Benne de Weger. To
accomplish this, we start with two arbitrary plaintexts P and Q. One can compute
suffixes S1 and S2 such that P |S1 and Q|S2 collide under MD5 by making 250
hash evaluations. Using this approach, a pair of different executable files or PDF
documents with the same MD5 has can be computed.

The Secure Hash Algorithm (SHA) is a family of cryptographic hash func-
tions published by NIST as a federal standard. SHA-1 was developed by the NSA
with 160 bit output. Although considered insecure, it is more secure than MD5 and
is still used in legacy systems. Only theoretical attacks have been reported, since
it would cost around $100000 to break a single hash. SHA-2 was also developed
by the NSA, and has 256 and 512 bit output. This is still considered secure, as no
significant attacks have been reported. SHA-3 was the winner of a public compe-
tition. It is very different from SHA-1 and SHA-2. It has output sizes of 224, 256,
384, and 512 bits.

Hash functions are often constructed from simpler one-way compression func-
tions. Compression functions have the same general properties of a general hash
function. Namely, they are fast, deterministic, uniformity, pre-image, second pre-
image, and collision resistant. However, the input has a fixed length (input block
size). For instance, it takes 2n bits of input to produce n bits of output. Compres-
sion functions are then combined to implement cryptographic hash functions that
accept variable length input. Merkle Damgard Hash Function Construction
is a method of building collision resistant cryptographic hash functions from simpler

Information Security and Privacy 40

one-way compression functions. If the underlying compression functions are colli-
sion resistant, then the constructed function is also collision resistant. Many cryp-
tographic hash functions such as MD5, SHA1 and SHA2 are based on this method.
It is important to note that padding is vital to many algorithms. Supposing that
the message is not long enough, common padding is of the form

10000...0|message length.

It may be necessary to add a new block if the padding calls for it. It is also clear
that cryptographic hash functions have a limited lifetime.

Remark. Note that we perform padding for every input given into the function.

22 March 10, 2017

22.1 Symmetric Cryptography

In secret key cryptography (symmetric), the key must remain secret from a
potential adversary. This means that the key may have to be shared, such as through
a two-way communication. This is a potential source of weakness. The secret key
is used both for encryption and decryption. The encryption of a message m for a
secret key k is denoted as

ciphertext = Ek(m),

while decryption of the ciphertext c is given as

plaintext = Dk(c).

This is in contrast to public key cryptography (asymmetric), which uses a
public key that ideally everyone knows, and a private key that remains secret.

Secret key cryptography provides a means of secure communication since no-
body can eavesdrop on the conversation. Replay attacks are possible however, and
integrity is not preserved. This form of cryptography can also be used for secure
storage on insecure media, such as the encryption of data before writing and the
decryption before reading. Mutual authentication via challenge-response is pos-
sible, since one can prove the knowledge of a key without revealing it. Consider the
following scenario where Alice and Bob want to prove to each other that they know
the secret key k:

1. Alice creates and sends a unique challenge cA.

2. Bob crates and sends a unique challenge cB.

3. Alice computes and sends back rA = Ek(cB).

4. Bob computes and sends back rB = Ek(cA).

5. Alice verifies Dk(rB) = cA and Bob verifies Dk(rA) = cB.

Information Security and Privacy 41

22.2 Block Ciphers

Most modern ciphers operate on fixed blocks of plaintext and ciphertext. Many
ciphers require that plaintext and ciphertext blocks contain 128 bits. To encrypt
messages of arbitrary size, we split the message into blocks. A plaintext of length n
is partitioned into a sequence of m blocks where each block has a length of b, where
the last block may require padding. The message is then encrypted or decrypted in
terms of the blocks. The padding may be done by introducing extra bits.

Since block ciphers require the length of the plaintext be a multiple of the block
size, padding needs to be performed. Padding the last block needs to be unambigu-
ous. That is, one cannot simply add zeroes. When the block size and plaintext
length are a multiple of 8, a common padding method is PKCS7. The padding in
this method is a sequence of identical bytes, each indicating the length (in bytes) of
the padding.

Example. Suppose we have a block size of b = 128, which is 16 bytes. The plaintext
message is “Roberto”, which is 7 bytes long. Thus, we require 16 − 7 = 9 bytes of
padding. Determine the padded plaintext.

Since we require 9 bytes of padding, this means that according to the PKCS7
padding method, we add a sequence of identical bytes each indicating the length
in bytes of the padding. Thus, the padded plaintext becomes “Roberto999999999”,
which is now 16 bytes long.

Remark. We note that the last block always needs to be padded. Thus, if the
message is a multiple of the block size, then an extra block will be added containing
only the padding.

In practice, block ciphers have many applications. The Data Encryption
Standard (DES) was developed by IBM and adopted by NIST in 1977 via compe-
tition. The NSA suggested some changes which IBM accepted. This was declared a
federal standard for unclassified sensitive data. DES uses 64-bit blocks and 56-bit
keys. The small key space makes exhaustive search attacks feasible since the late
90s. This standard is not secure at all today, but this is only because brute-force
attacks have been made possible. The DES standard generated much interest in the
cryptographic community. It has since been superseded by AES.

The Triple DES (3DES) was built to fix the DES weakness, namely its short
key length. 3DES is a nested application of DES with three different keys kA, kB,
and kC . The effective key length is therefore 168 bits, making exhaustive search
attacks infeasible. The encryption and decryption are

ciphertext = EkC (DkB (EkA(plaintext))),

plaintext = DkA(EkB (DkC (ciphertext))).

This is equivalent to DES when kA = kB = kC , making it backwards compatible.
3DES is still used today and is generally considered secure.

Information Security and Privacy 42

DES uses Feistel Network, where the approach is to generate complexity by
repeating s simple operation (rounds). Each round uses a sub-key k1 derives from
k. The encryption and decryption are the same algorithm, but using the sub-keys
in the reverse order. Security depends on the function F called the Feistel function.
In this function, a XOR operation is performed on the half block of 32 bits and
the sub-key of 48 bits. Many substitutions are performed, with a final permutation
performed on the collected data from the multiple substitutions. DES uses a half
block of 32 bits in Expansion. The XOR operation is performed on this with a
subkey of 48 bits. Substitution is then performed to separate it into 8 components,
which are then combined for Permutation.

The Advanced Encryption Standard (AES) was selected by NIST in 2001
through open international competition and public discussion. AES is a subset of
the Rijndael cipher, and is based on substitution-permutation network. It uses block
sizes of 128 bits and key lengths of 128, 192, and 256 bits. Exhaustive search attacks
are not currently possible. The AES-256 is currently the symmetric encryption
algorithm of choice. AES takes an input of 128 bits and a key of an appropriate
length described above, to produce an output of 128 bits.

Instead of using a Feistel network, AES uses a permutation-substitution
network. The AES encryption algorithm proceeds in n rounds,

• AES-128: 10 rounds.

• AES-192: 12 rounds.

• AES-256: 14 rounds.

Each round performs an invertible transformation on a 128-bit array called the
state. The initial state X0 is the XOR of the plaintext P with the key k, so that
X0 = P ⊕ k. Round 1 ≤ i ≤ n receives state Xi−1 as input and produces state
Xi. The ciphertext C is the output of the final round, so C = Xn. Decryption is
performed by reversing the rounds.

There are 4 steps per round in the AES standard. This consists of the following
steps:

1. SubBytes step: An S-box substitution step.

2. ShiftRow step: A permutation step.

3. MixColumns step: A matrix multiplication step. This is skipped in the last
round.

4. AddRoundKey step: A XOR step with a round key derived from the 128-bit
encryption key.

Information Security and Privacy 43

23 March 13, 2017

23.1 Block Cipher Modes of Operation

A block cipher mode of operation describes the way a block cipher encrypts and
decrypts a sequence of message blocks. Some standard modes include ECB, CBC,
OFB, CFB, and CTR. The Electronic Code Book Mode (ECB) is the simplest.
The plaintext block P [i] is encrypted into the ciphertext block C[i] = Ek(P [i]), while
the ciphertext block C[i] is decrypted into the plaintext block M [i] = Dk(C[i]). ECB
is simple, allows for parallel encryptions of the blocks of a plaintext, and can tolerate
the loss or damage of a block. However, documents and images are not suitable for
ECB encryption since patterns in the plaintext are repeated in the ciphertext.

The Cipher Block Chaining Mode (CBC) consists of the previous ciphertext
block combine with the current plaintext block,

C[i] = Ek(C[i− 1]⊕ P [i]).

C[−1] = IV is a random block called an initialization vector. Decryption is
performed by

P [i] = C[i− 1]⊕Dk(C[i]).

CBC does not show patterns in the plaintext and is relatively fast and simple. This
is the most common mode, as decryption can be performed in parallel and even
random access is possible. However, there is no integrity protection, and encryption
cannot be performed in parallel. It is not suitable for applications that allow packet
losses (such as music and video), and requires padding.

A block cipher in Counter Mode (CTR) can turn a block cipher into a stream
cipher, such as through using AES-256. It uses a block cipher H with a block size of
b (AES-256 implies b = 128 bits). The secret key pair (k, T), where k is the key and
T is a counter is also a b-bit value. The (k, T) pair must be unique, so T is often
a nonce. No padding is required. The ciphertext should be sent with HMAC, and
the HMAC tag should be calculated after encryption (encrypt then authenticate).

ciphertexti = Hk(counteri)⊕ plaintexti, counteri+1 = counteri + 1,

plaintexti = Hk(counteri)⊕ ciphertexti, counter0 = T.

Essentially, a nonce is used with the counter, along with the key as input intot he
block cipher encryption function. We then perform XOR on the resulting output
with either the plaintext or ciphertext to obtain the corresponding ciphertext or
plaintext respectively.

23.2 Stream Ciphers

A stream cipher is a symmetric key cipher where the plaintext digits are combined
with a pseudo-random cipher digit stream called the keystream. Each plaintext

Information Security and Privacy 44

digit is encrypted one at a time with the corresponding digit of the keystream to
give a digit of the ciphertext stream. The keystream is a pseudo-random sequence of
bits S = S[0], S[1], S[2], ... that can be generated online one bit (or byte) at a time.
The stream cipher performs a XOR on the plaintext with the keystream so that
C[i] = S[i] ⊕ P [i]. The stream cipher is suitable for plaintext of arbitrary length
generated live (for instance, in a media stream), and is loosely motivated by the
one-time-pad cipher.

In a synchronous stream cipher, the key stream is obtained only from the
secret key k. Both sides must be synced, and a sync loss could result in a problem.
Recovery is still possible by attaching markers to the ciphertext. However, the
random bit change is not a problem. In self-synchronizing stream ciphers, key
streams are obtained from the secret key and n previous ciphertexts. The loss of
packets cause a delay of n steps before decryption resumes. An example would be
RC4, which was designed by Ron Rivest for RSA Security in 1987. It is also known
as Ron’s Code. This was a trade secret until 1994. It uses keys with up to 2048
bits and is a relatively simple algorithm.

23.3 Confusion and Diffusion

It is not easy to design a good cipher, as it requires a lot of experience. We do know
some desirable properties of ciphers:

• It should be hard to figure out the plaintext from the ciphertext.

• It should be hard to figure out the key from the ciphertext.

• We assume that the attacker already knows the ciphertext, so the ciphertext
should not be trivially similar to the plaintext.

For example, the attacker could know the frequency distribution of the plaintext, or
know certain words or phrases that are used in the plaintext. This could be used to
break a cryptographic algorithm. In 1945, Claude Shannon identified two important
properties of ciphers, which are confusion and diffusion. If both are present, they
make statistical analysis very difficult:

1. Confusion: The relationship between the key and the ciphertext is very com-
plex. Every bit of ciphertext should depend on the entire key. Any change in
the key should result in an unpredictable change in the ciphertext. The key
cannot be deduced even from many different plaintext-ciphertext pairs.

2. Diffusion: The relationship between the plaintext and the ciphertext is very
complex. Any change in the plaintext should change every bit of ciphertext
with equal (50%) probability, and vice versa (avalanche effect).

Confusion is generally implemented by some form of substitution, while diffusion
is generally implemented by some form of permutation. Confusion and diffusion are

Information Security and Privacy 45

generally implemented as a repeatable series of substitutions and permutations.
What remains is mixing in the key between each round. Many modern ciphers are
implemented using substitution-permutation networks. DES and AES are two such
examples.

A Meet-in-the-middle attack is a space?time tradeoff attack on schemes using
repeated encryption. For example, consider 2DES with two keys, K1 and K2.
Encryption and decryption are given by

C = EK2(EK1(P)),

P = DK1(DK2(C)).

A brute force attack with O(1) memory would require 256+56 = 2112 attempts. With
O(256) memory, we can execute a meet-in-the-middle attack. This requires precom-
puting all EK1(P) and all DK2(C) possibilities to identify key candidates. The time
complexity is then O(257). 2DES, despite having 112 bit key size, only offers 57
bit security. 3DES is also vulnerable to meet-in-the-middle attacks. Although the
key size is 168 bits, it only offers 112 bit security, provided O(256) is feasible. NIST
predicts 3DES should remain safe until 2030.

24 March 15, 2017

24.1 Public Key Cryptography

If n people want to communicate using symmetric key, then every pair needs a
separate symmetric key. Thus, they would need O(n2) keys. This is too many, and
is difficult to manage. Thus, we either use public cryptography where we only need
O(n) keys, or we use centralized key management. The main uses of public key
cryptography are for secure communication and digital signatures.

Consider the following procedure for communication between Alice and Bob
using asymmetric cryptography:

1. Alice wants to send a message to Bob.

2. Alice has public and private keys kA and k−1A (or kA and PkA).

3. Bob has public and private keys kB and k−1B (or kB and PkB).

4. Alice encrypts the plaintext using Bob’s public key k−1B , then sends the ci-
phertext to Bob. That is,

C = {P}kB.

5. Bob decrypts the ciphertext using his private key, since

P = {C}PkB.

Information Security and Privacy 46

6. If Bob wants to send a message to Alice, Bob encrypts using Alice’s public
key while Alice decrypts using her private key.

This serves to ensure confidentiality, and has nothing to do with integrity or non-
repudiation. In this example, we assume that Alice and Bob know each other’s
public keys.

In public key communication where n people want to communicate, we need
O(n) public and private key pairs. It is still difficult to manage all of these public
keys. The solution is to use a public key infrastructure or web of trust. Since
public key ciphers are much slower than symmetric ciphers, these are often used
together in hybrid cryptosystems. For instance, public key cryptography can
be used in communication. First, the ender and receiver agree on a big random
secret key. First, we exchange secret keys using public cryptography, and then
use these secret keys for the rest of the communication. SSL and TLS (HTTPS)
use a similar mechanism. Asymmetric cryptography can also be used to encrypt
information stored on insecure media. First, a random secret key is generated,
and then encrypted using asymmetric cryptography. Data can then be encrypted
with the secret key using symmetric cryptography. We note then that asymmetric
cryptography is used to securely transfer the secret key.

Digital signatures provide a mechanism for proving authenticity of a message
(similar to standard signatures). The message arrives as a tuple (message, signature).
To compute the signature, a private key is used. Normally, this is applied only to a
cryptographic hash of the message. The signatures is

signature = Eprivate(h(message)).

Only someone in possession of the private key can sign. To verify the signature, the
public key is used. The cryptographic hash is computed on the received message.
The received signature is decrypted using the public key and compared, where

Dpublic(signature) = h(message).

In this way, anyone with the public key can verify the signature. The signature can
only be generated by someone in possession of the private key (and thus cannot be
forged), but can be verified by anyone that has the pubic key. It is therefore ideal
that the public key is widely known. Applications include authenticity, integrity
(standard signatures do not have this), non-repudiation of origin, and certificates.

24.2 Diffie-Hellman Key Exchange

Suppose that Alice and Bob want to communicate securely. They have never met,
and they do not have a secret key. The solution is to use the DHFE algorithm
to establish a secret key. DHKE is used to generate a shared secret between two
parties. This secret can then be used for symmetric encryption. The algorithm

Information Security and Privacy 47

relies on the assumption that the discrete logarithm problem is difficult. It is
believed that DHKE is as hard as the DLP.

Let p be a prime number, and let a and b be non-zero integers. The discrete
logarithm problem states that given a, b, and p, find x such that

ax = b mod (p).

DLP is believed to be an exponentially difficult problem, since the best running
time is exponential with respect to log(p). The record in 2015 was a 232 digit prime
number p, which was broken in 6600 core years (p ≈ 770 bits). 2048 bits should
be sufficient for the foreseeable future (until around 2030), while 4096 bits is even
safer.

The DHKE algorithm is based on two people choosing a private number, and
then calculating a public number to present the other. They then communicate the
public numbers to each other. Each individual can then use the other’s public num-
ber with their own private number to compute the shared secret. The eavesdropper
cannot reproduce this. The steps of the DHKE are as follows:

1. Alice chooses a random prime number p, a secret number a, and g that is a
primitive root modulo p.

2. Alice sends Bob(g, p, ga mod (p)).

3. Bob then generates a secret number b, and sends Alice gb mod (p).

4. Bob computes k = (ga mod (p))b mod (p).

5. Alice computes k =
(
gb mod (p)

)a
mod (p).

6. Since the above two expressions are equal, they now both have the same num-
ber k, which is the newly created shared secret. They can therefore start
communicating via symmetric cipher using the key k.

7. Eve the eavesdropper cannot compute k = gab mod (p) since she only as g,
p, ga mod (p), and gb mod (p).

We note that if a number g is a primitive root modulo p, then it has the
special property that g raised to the powers of 1, 2, ..., p − 1 mod (p) generates
{1, 2, ..., p− 1}. That is,

{g1 mod (p), g2 mod (p), ..., gp−1 mod (p)} = {1, 2, ..., p− 1}.

3 for instance is a primitive root modulo 7, while 2 is not. Consider the following
example:

1. Alice and Bob agree to use p = 23 and g = 5. Note that 23 is a prime and 5
is a primitive root modulo 23.

Information Security and Privacy 48

2. Alice chooses a secret integer a = 6, then sends Bob

A = ga mod (p) = 56 mod (23) = 8.

3. Bob chooses a secret integer b = 15, then sends Alice

B = gb mod (p) = 515 mod (23) = 19.

4. Alice then computes

s = Ba mod (p) = 196 mod (23) = 2.

5. Bob then computes

s = Ab mod (p) = 815 mod (23) = 2.

6. Alice and Bob now share a secret s (the number 2).

However, DHKE is vulnerable to MITM attacks. After intercepting the first
transmission to obtain g, p, and ga mod (p), the attacker could send a false gc

mod (p) to both parties, along with g and p to the original receiver of the first
message. To resolve this, we use public key encryption in the Authenticated DHKE
to sign all communication with private keys. For instance, Alice signs everything
with her private key, while Bob signs everything with his private key. Alice and
Bob can now verify that MITM did not tamper with the exchange. We have now
authenticated DHKE, so it is immune to MITM. In summary, the Authenticated
DHKE requires that ga mod (p) and gb mod (p) are signed with the respective
owner’s private keys before they are sent. The signatures are then verified to ensure
that the exchange has not been tampered with.

However, if we already have public and private keys already, then why do we
bother with DHKE? We do so to achieve forward secrecy, which is also known as
perfect forward secrecy. Forward secrecy is the property of secure communica-
tion in which the compromise of a long-term secret key does not compromise past
session keys. That is, someone who learns of Alice or Bob’s private keys would not
permit them to decrypt past conversations. Communication based on the Diffie-
Hellman Key Exchange have this property if each communication session uses a
different prime number.

25 March 17, 2017

25.1 Enveloped Public Key Encryption

EPKE is a method of using public key cryptography to ensure confidentiality, in-
tegrity, non-repudiation. The sender first signs a message with their own private

Information Security and Privacy 49

key, then encrypts this with the receiver’s public key. When this is sent, the mes-
sage cannot be observed or tampered with. When one receives the message, they
decrypt the received message using their own private key. They can then verify the
signature using the sender’s public key.

25.2 RSA

RSA (Rivest, Shamir, Adleman) is one of the first practical public-key cryp-
tosystems and is widely used for secure data transmission. It was created in 1977
by Ron Rivest, Adi Shamir, and Leonard Adleman. Clifford Cocks had developed
a similar system in 1973 for the UK intelligence agency GCHQ, but this was not
declassified until 1997. The public key consists of the pair of numbers (e, n), while
the private key consists of the pair of numbers (d, n). Note that only d needs to be
kept secret. Encryption and decryption are respectively,

c = me mod (n),

m = cd mod (n),

where c is the ciphertext and m is the plaintext. In this case, we have a maxi-
mum length for c and m, since it would be dictated by n. Optimal asymmetric
encryption padding (OAEP) provides a means to add an element of random-
ness to convert a deterministic encryption scheme (such as traditional RSA) into
a probabilistic scheme. This is especially useful when the message m is small. It
also prevents partial decryption of ciphertexts by ensuring that an adversary cannot
recover any portion of the plaintext without being able to find the inverse of the
encryption function.

For RSA to be useful, we need to be able to find (e, d, n) such that

(me mod (n))d mod (n) = med mod (n) = m,

for any m < n. We also need to be able to quickly come up with many different
version of (e, d, n). Encryption and decryption should be fast, and it should also
be difficult to decrypt a ciphertext if only (e, n) are known. The RSA process is
described below:

1. Two distinct prime numbers p and q are selected. These should be chosen ran-
domly, and should be similar in magnitude but differ in length by a few digits
to make factoring harder. This can be accomplished using cryptographically
strong random number generation and a probabilistic primality test (such as
Miller-Rabin).

2. Calculate n = p · q. log2(n) ≈ 4096 bits is the key length.

3. Calculate φ(n) = (p − 1) · (q − 1) or λ(n) = lcm(p − 1, q − 1) < φ(n), where
φ(n) is Euler’s totient function, and λ(n) is Carmichael’s totient function.
This value is kept secret.

Information Security and Privacy 50

4. Select e such that e is relatively prime to φ(n) or λ(n). That is, the greatest
common denominator of e with the other value is 1. Usually, e can be small
(1 < e < φ(n)/λ(n)), so that it starts at 65537, which is 10000000000000001
in binary.

5. Next, we find d such that e · d mod (φ(n)/λ(n)) = 1. That is, d is the mul-
tiplicative inverse of e modulo φ(n) or λ(n). This can be calculated quickly
using the extended euclidean algorithm. e is released as the public key expo-
nent while d is kept as the private key exponent.

RSA is secure under the assumption that integer factorization is difficult. Integer
factorization involves finding all the prime factors of n. There is currently no known
algorithm that can accomplish this in polynomial time. The second assumption is
that the strength of the RSA cipher is related to the factorization problem. To
break RSA, we want to recover m from c = me mod (n). The best way we know
to accomplish this is to find d from (e, n) where d is the multiplicative inverse of e
modulo the function used. However, to find d, we need the corresponding φ(n) or
λ(n). These functions are used as trapdoors. However, to find these functions, we
need (p, q), which is the same as solving integer factorization.

RSA works because
me·d = m mod (n).

We know that n = pq, where p and q are both prime. Thus, if we can show that
me·d = m mod (p) and me·d = m mod (q), then me·d = m mod (n) since n = pq.
First, we consider the case that m is a multiple of p. Then m = 0 mod (p), so
me·d = m mod (p). In the second case that m is not a multiple of p, we note that we
chose e and d such that they equal 1 modulo φ(n). So, ed = 1 mod ((p−1) ·(q−1)).
Thus, ed = 1 mod (p − 1). This means that ed = k · (p − 1) + 1 for some integer

k. Then, me·d =
(
mp−1)km. By Fermat’s little theorem, mp−1 = 1 mod (p), so

me·d = 1km mod (p). The proof for q is identical.

26 March 20, 2017

26.1 Digital Certificates

A practical problem with public key cryptography is that one needs to know another
entity’s public key to encrypt. However, it is difficult to ensure that one obtains
a legitimate key in the presence of MITM. Both entities need to send and retrieve
public keys through a mechanism that can verify this key. This mechanism that is
to be trusted by both parties may come from a centralized service that would verify
both public keys. However, this first solution could be impractical or susceptible to
MITM attacks. The second solution is to employ a trusted third party. This is the
basis for digital certificates:

Information Security and Privacy 51

1. Alice and Bob get their public keys signed by Trent.

2. Alice contacts Bob.

3. Bob sends to Alice his public key together with Trent’s signature (as one
document).

4. Alice verifies the document signature.

5. If the signature matches, then Alice has good reason to believe she is talking
to Bob.

6. Alice also sends to Bob her public key, together with Trent’s signature.

7. The cycle repeats.

The signed document is called a digital certificate or a public key certificate.
In this scenario, Trent plays the role of the certificate authority (CA). Before
Alice can talk to Bob, she needs to obtain (somehow) the certificate authority’s
public key and install in on her computer. Alice is now ready to talk to Bob, so long
as Bob uses the same CA. Alice can trust anyone who has their public key signed
by the CA. Before Bob can respond, Bob asks the certificate authority to sign his
public key. The CA verifies Bob’s identity and charges a fee. The CA then signs
Bob’s key using the CA’s private key. The CA then gives Bob the certificate, which
includes Bob’s public key and the CA’s signature.

A digital certificate is a signed document containing an identity and a public
key with some additional information. It is used to prove the ownership of a public
key by binding an identity and a public key. The trust must start somewhere, so
we generally trust the CA’s signature and their public key. The CA’s public key
(trust anchor) must be obtained out-of-band. This usually ships with a browser.
Inside the certificate is the public key, subject, issuer, and signature. Technical
information, such as the signature algorithm used and a unique serial number are
also on the certificate. The certificate contains a valid from/to date, outlines the
purposes for the key, and provides identifying information such as the company
name and location. The issuer does not have to be the root CA, as it could be an
intermediate CA. Thus, certificates can contain a chain of certificates.

Most CAs are tree-structured. The root certificate authority endorses the
intermediate certificate authorities, forming a hierarchy. This creates a chain
of trust, as a certificate includes certificates of all intermediate CAs up to the root.
There are multiple root CAs, each with their own hierarchies. Browser are generally
pre-installed with root certificates. Some website certificates can be checked using
the command line or using online services, such as “https://www.geocerts.com/ssl˙checker”.

Keys associated with certificates can be compromised. One possible solution
is to use certificate revocation lists (CRLs). These can get very large. They
are a good thing when certificates expire, and browsers consult these periodically.

Information Security and Privacy 52

Another solution is to use online certificate status protocol (OCSP). These are
web-services that check the validity of a certificate by8 serial number. There can
be security implications (MITM) and a high load on the CA. An improvement is
OCSP stapling, which is similar to kerberos tickets in that the certificate holder
requests time-stamped validation. Certificate revocation is a serious problem.

The addition of SSL/TSL over HTTP is HTTPS, and is indicated by the green
lock icon in the address bar. Communication is authenticated using certificates.
Some third party verifies that the site belongs to the entity claiming to be the
owner. Communication is encrypted, and all content on the site is also protected
(images, scripts, etc). The green icon anywhere else means nothing. Generally, when
we use a browser, we trust the browser developers. Many certificate authorities do
not have many warranties, and disclaim all liability.

PGP’s Web of Trust is a solid privacy encryption software that is used primarily
for email encryption. PGP implements a different style of public key infrastructure
that is based on a web of trust instead of the traditional certificate hierarchy.
The certificates can form an arbitrarily-complex graph. Users can verify paths to as
many trusted anchors as they wish. Users sign each other’s certificates at signing
parties. Other alternative trust models rely on commercial identity-based CAs.
One obtains certificates from parties they know directly, and issue certificates to
their own users. Let’s Encrypt is a free, automated, and open certificate authority,
“https://letsencrypt.org/”.

X.509 and PKIX are standards for public key certificates. X.509 is an inter-
national standard from the International Telecommunications Union’s Standardiza-
tion sector (ITU-T), while PKIX is a practical subset of X.509 used on the internet.
Parsing is not trivial, so OpenSSL does most of this for us.

27 March 24, 2017

27.1 SSL and TLS

Transport Layer Security and its predecessor Secure Sockets Layer are crypto-
graphic protocols used to establish secure communications over an insecure network.
This means that it is immune to both eavesdropping and tampering. It provides
confidentiality through symmetric encryption, with keys generated uniquely for each
connection (perfect forward secrecy). The algorithms and other technical details to
accomplish this are negotiated by both ends. Since it provides a message authenti-
cation code (MAC) for every message, it protects the integrity of the data. Lastly,
it verifies authentication of both parties through certificates and trusted CAs. In
client/server scenarios, it is usually only the server that authenticates itself to the
client.

All versions of SSL were created by Netscape. SSL 1.0 was motivated by the need
for secure HTTP, but it was not ultimately released. SSL 2.0 was released in 1995

Information Security and Privacy 53

and used for HTTPS, but contained serious flaws. In 1996, SSL 3.0 was released, and
has since been broken in 2014 through a poodle attack. TLS 1.0 (RFC 2246) was
based on SSL 3.0, and was released in 1999. Small but important differences exist
between the two, so they are not compatible. TLS 1.1 (RFC 4346) was released in
2006 with some minor changes including fixes to CBC block cipher mode. In 2008,
TLS 1.2 (RFC 5246) was released with many major changes, such as the inclusion
of AES, and the replacement of many instances of MD5 with SHA256. This was
later refined to disable a SSL 2.0 downgrade. As of 2017, TLS 1.3 is currently a
working draft.

Recall that the green lock icon in the address bar of a web browser indicates a
secure connection. The browser is communicating in HTTPS, which is HTTP over
the SSL/TLS protocol. This form of communication is secure. SSL and TLS are
applied at the 7th layer in the application level protocol, between the transmission
control protocol (TCP) and application. They were designed to be usable by any
application (as opposed to OS support). Support can be added to the client and
server applications through existing libraries. Many libraries are available, with
multiple languages supported (for instance, OpenSSL). Its most common uses are
for HTTPS (for browsing), VPN (for extending private networks), email, instant
messaging, and voice over internet protocol (VOIP) such as Skype.

27.2 SSL and TLS Protocols

The underlying principle of SSL and TLS is a three step procedure:

1. Handshake involves establishing parameters for secure communication. This
is done using public key encryption.

2. Change Cipher involves agreeing to switch to a newly negotiated cipher.
There is confirmation that all parameters were exchanged correctly.

3. Talk involves talking securely using the parameters established during the
handshake. This is done using symmetric cryptography, and is called appli-
cation data protocol.

The application data protocol is where the two applications get to talk to
each other. For instance, in HTTP, the browser will finally be able to tell the web
server which page it wants, and the server then sends the contents of said page.
It uses cryptographic primitives based on the parameters established during the
handshake. Long messages are split into smaller fragments. For each fragment, it
optimally compresses the data, calculates HMAC, encrypts all the data using the
shared secret through a symmetric cipher, adds a header, and then transmits.

The handshaking protocol is used to negotiate the version of the protocol and
the set of ciphers. It is needed to increase the chances of older software talking to
newer software. Nonces are then exchanged. An agreement is made with regards

Information Security and Privacy 54

to a pre-master secret. Certificates and related information are exchanged for pur-
poses of authentication. A master secret is then created from the pre-master secret
and nonces. It can then verify that each side has the same parameters and that
the handshake was not tampered with by MITM. It then switches to symmetric
encryption.

The handshaking protocol is a complex process. Client hello consists of a ran-
dom 4 bytes. The session ID is null for a new session or a new connection, and
otherwise indicates a request to open a new connection on an existing session. This
includes the client SSL version, supported ciphers ordered by preference, and sup-
ported compression algorithms ordered by preference. Some examples of supported
ciphers include

TLS DHE RSA WITH AES 128 CBC SHA,

TLS DHE RSA WITH AES 128 CBC SHA256,

TLS DHE RSA WITH AES 128 GCM SHA256.

Server Hello consists of a random 32 bytes. The session ID is new or reused (if
still in cache). It includes the chosen SSL version (which is the minimum of the
client version and server version), the chosen cipher, and the chosen compression
algorithm.

In the event that the chosen cipher requires a public key, the server sends a cer-
tificate. This is most commonly the case, since RSA, Fixed DH (Diffie-Hellman),
and Ephemeral DH require pubic keys. Anonymous DH does not require a public
key. The server actually sends an X.509 certificate chain. The server key ex-
change is not needed for some ciphers, but for others, provides extra information
needed for the cipher to function. These are signed by the server. This is followed by
a certificate request that is sent if the server also wants the client to authenticate.
The server supplies allowed CA roots. However, this step is not common. Server
hello done indicates that the client can now talk.

The client then sends the certificate if this was requested by the server. If the
client has a valid certificate chain, it is sent. Otherwise, an empty list is sent. The
client key exchange depends on the type of key exchange agreed on. If it was
RSA, then the client generates a random pre-master secret and encrypts this with
the server’s public key. If DHKE was used, then the client sends enough information
for both parties to then use DHKE to arrive a the same pre-master value. Lastly,
certificate verify occurs since the client must send this if they are sending a client
certificate. This contains a digital signature of all previous communication, and
serves as proof of knowing the private key corresponding to the public key in the
certificate.

The change cipher spec protocol is considered a separate protocol that occurs
during the last stage of the handshake. Change cipher spec is a single byte
denoting a switch to the newly negotiated cipher. Finished is sent under the new

Information Security and Privacy 55

encrypted cipher. The message is a hash of all previous messages and the master
secret. The change cipher spec protocol is sent by both the client and the server.

27.3 Master Secret

The pre-master secret is 48 bytes, and is computed for each session during the
handshake. It is derived differently for different ciphers, and is only used to compute
the master secret. This means that it id deleted immediately afterwards. The
master secret is also 48 bytes, and is always computed using the same algorithm.
The master secret is computed by applying a pseudorandom function (PRF) to
the pre-master secret, the client hello random, and the server hello random. The
PRF is a deterministic function that generates random looking output of any desired
length. In SSL, it is implemented by repeated application of HMAC.

Recall that the master secret is different for each session. The master secret is
cached for faster session resumption. Both the client and server contribute to its
creation. The master secret is used for generating encryption keys, HMAC secrets,
and initialization vectors. Thus, the master secret, server random, and client random
are used by the PRF once again to generate the required items listed above. If the
master key is compromised, only one session will be affected, as in accordance with
the principles of forward secrecy.

28 March 27, 2017

28.1 Web Security

All websites should use HTTPS. However, cryptography alone is not sufficient. We
are often concerned with what the server really knows about the client, and what
the client really knows about the server. Breaking SSL/TLS is quite difficult. The
underlying cryptography, protocol, and implementation are generally very strong.
These may be occasionally broken, but they are fixed quickly.

Some attacks take advantage of unsuspecting users or poorly designed software.
Typosquatting or URL hijacking is a type of cybersquatting. It takes advantage
of common typing mistakes. By registering a fake domain, one can create a look-
alike site. They can then wait and harvest usernames and passwords. This can be
through mistyped addresses, or phishing attacks containing links to a fake website.

Network attacks sniff unencrypted connections on existing WiFi or wired hubs.
This can be accomplished by setting up free WiFi hotspots in popular locations. The
attacker can then eavesdrop on unencrypted connections and harvest usernames and
passwords. ARP or DNS poisoning can also be used. The Domain Name System
servers translate domain names into IP addresses. If an attacker subverts the DNS
server to report a fake IP address, then the attacker can install a website clone
on the fake IP address. Alternatively, they may launch a MITM attack through a
cloned site. By implementing a login screen, they can harvest credentials. They

Information Security and Privacy 56

can also report that the site is under maintenance for all other requests. If the user
recalls that the site usually has a secure green icon, the attacker could

• Place a green icon somewhere on the page.

• Hack into one of the root CAs to sign their own certificate.

• Hack into the user’s computer to install a fake root CA on the user’s machine.

MITM attacks are possible even with HTTPS present. The attacker can tamper
with traffic to a select site, or tamper with all traffic (to all websites). For MITM
attacks with hybrid HTTP/HTTPS, the could

• Eavesdrop and record HTTP requests from the browser.

• Forward the requests to the HTTPS version of the real site.

• Obtain replies from the real site via HTTPS.

• Forward the results back to the browser over HTTP.

An example implementation can be found at “https://moxie.org/software/sslstrip/”.
An Extended Validation Certificate costs more money, but provides the user
with an extra chance to spot a fake website.

Back to the MITM attack, we note that the attacker records HTTP requests.
This means that the user is attempting to use HTTP to connect to a site running
HTTPS. To navigate to a website securely, we should use an HTTPS bookmark,
or type in the address bar with HTTPS. Some sites redirect HTTP requests typed
in the address bar to HTTPS. This redirect happens via a message sent from the
server to the browser. The attacker can easily intercept this message. Some sites
are implemented using only partial HTTPS, which is cheaper, so users must browse
most of the site in HTTP. Checkout and login are performed via HTTPS. However,
it could be possible for an attacker to intercept the checkout button on the HTTP
to supply their own page. It is clear that a user may not notice. Many smaller sites
also outsource payment processes.

HSTS, the HTTP Strict Transport Security defines a mechanism enabling
web sites to declare themselves accessible only via secure connections and/or for
users to be able to direct their user agent(s) to interact with given sites only over
secure connections. The policy is declared by web sites via the Strict-Transport-
Security HTTP response header field and/or by other means, such as user agent
configuration, for example. This prevents many MITM attacks, but a site must be
accessible only through HTTPS. Furthermore, the protection is only activated on
the second visit. It works best with the HSTS preload list, where browsers come
pre-installed with HSTS lists, or through opt-in lists.

HPKP, the Public Key Pinning Extension for HTTP defines a new HTTP
header that allows web host operators to instruct user agents to remember (“pin”)

Information Security and Privacy 57

the hosts’ cryptographic identities over a period of time. Pinning may reduce the
incidence of man-in-the-middle attacks due to compromised Certification Authori-
ties. PKP is meant to be used in conjunction with HSTS, but this is not necessary.
It acts to prevent compromised CAs and fake certificates.

28.2 Server and Client

We recall that the server only knows about the client what has been relayed by
SSL. If client-side certificates are used, then the server knows the full identity of the
client. This can be used instead of a username/password, and is supported by many
browsers. if client-side certificates are not used, then the server knows absolutely
nothing about the client. SSL provides only a secure pipe, so while communication
is confidential and integrity is protected, the user on the other side could be anyone.

The client on the other hand, receives the server’s certificate. Someone is vouch-
ing for the binding of some name and attributes to a public key. Many browsers
ship with multiple CA root certificates. If even a single one is compromised, se-
curity is lost. For instance, if someone convinces one of them to sign and sell a
certificate for www.bank-of-montreal.com, a user may not notice that the real site
is www.bmo.com.

While there is nothing wrong with SSL/TLS cryptography, the human factor
is the issue. Most users do not know what a certificate is, or what to do about
the warnings. Even if a user knows what a certificate is and how to verify it, it is
difficult to discern what it should say in any given context. There is no bulletproof
way of deciding whether to trust any given CA.

29 March 29, 2017

29.1 Browser Security

The attacker’s attackers’ goals are to steal information (passwords, credit card num-
bers) and to turn computers into bots. Since browsers are big applications, they
act as a considerable weakness, since many lines of code corresponds to many bugs,
leading to many vulnerabilities. Additionally, browsers serve active content, which
includes Java, Flash, ActiveX, and other types of plugins. JavaScript is a source
of many security holes. There is no well defined security model, and it is a crucial
component in cross-site scripting attacks. JavaScript can be used to:

• Interact with arbitrary web sites and servers to send or receive data.

• Interact with other pages in the same browser.

• Interact with other scripts.

• Interact with the page elements.

Information Security and Privacy 58

• Detect key presses and mouse gestures.

• Access the camera and microphone.

AJAX is Asynchronous JavaScript and XHTML, and allows interactive web
pages, or even a nearly desktop-like experience. It allows browsers to interact with
the servers without a page reload. The user might not even be aware that com-
munication is going on. This can be misused by adversaries. Websockets is a
communications protocol that provides similar functions.

Overall, JavaScript contains cross-site vulnerabilities. This is ultimately based
on misplaced trust, as the server developers trust their own client code, also trust
other people’s code (libraries). Browser bugs exist, and can be due to buffer over-
flows causing arbitrary code execution, API bugs causing the logging of keystrokes,
or sandbox bugs.

Cross-Site Scripting or (XSS) occurs when sites do not sanitize user input
to strip HTML. It exploits the user’s trust in the site. There are two main types of
XSS attacks:

• Reflected XSS requires some social engineering. Search site uses GET re-
quests. The search site displays the searched term and all items found that
match. An attacker may notice that the searched string was not sanitized, so
they craft a URL with a script embedded in it. If the user clicks on the link
while logged in, their credentials will be stolen. The submitted short script
can also load other scripts.

• Persistent XSS may take advantage of a site allowing users to enter com-
ments. These comments can include JavaScript code. These comments are
then saved on the server, and are served to the other users along with the in-
jected JavaScript. The injected JavaScript code can now access the protected
resources. That is, it runs with the same privileges as legitimate JS code. The
injected JavaScript can then transmit user?s authentication cookies to some
other site without the affected user ever noticing. This is one of the most
popular attacks on the web due to the user’s tendency to reuse passwords.

To defend against these attacker, users can disable JavaScript. This is not
feasible however, as many websites depend on it. We can convince developers to use
POST instead of GET requests to ward off reflected XSS attacks, and to sanitize
input properly (the best choice). Input sanitization is not trivial, especially with
Unicode. White-listing is preferable to black-listing, as accepting something is better
than denying a certain script. To defend in general, developers need to realize that
their server code should not trust everything sent by the client.

Cross-Site Request Forgery (CSRF) exploits the website’s trust in users. It
involves nearly unnoticeable social engineering. The user needs to visit a malicious
website while logged in to another site. This attacks requires a target site that

Information Security and Privacy 59

relies on a user’s identity that is stored and sent by the browser. The website uses
HTTP requests that have side effects. For example, to delete all files the user clicks
a button, which executes:

action = deleteAllF iles

If a logged in user visits a page on a different website where an image for instance is
linked to that website code (posted on a blog site for example), the user will notice
that all their files are gone.

Servers are also tempting targets for defacement, distribution of malware to
unsuspecting clients, and data theft. The defenses that the server has available are
limited to not trusting the client, checking all inputs, and securing the server. Most
websites use server-side scripts such as PHP, Python, Ruby, and JavaScript. Each
such script is technically a separate network service. For a website to be secure, all of
its scripts must be secure. Scripts must have limits on the damage they could cause.
One must consider the security context in which the scripts are run, the protection
of sensitive files from malfunctioning scripts, and whether users can run their own
server side scripts. A partial defense would be some server side sandboxing, such as
Apache’s suexec, or the VM based Docker and LXC.

Injection attacks result from not sanitizing inputs. A buffer overflow bug in a
script may permit an attacker execution of arbitrary code. Code and command in-
jections may come from server code that executes system calls or external commands
based on user inputs, or from malicious user input. In SQL injection, an attacker
could execute arbitrary database queries. The type of result/error reporting to the
browser can lead to blind SQL injection. A series of true/false SQL statements can
incrementally reveal information in the database. An attacker can “fingerprint the
relational database management system (RDBMS)”.

30 March 31, 2017

30.1 Web Authentication

Generally, we have three options for website authentication:

1. Client-Side Certificates use SSL. These are handled by the browser/server
directly. However, storing and protecting the private key is difficult. We need
to determine where the key lives, and how it is to be moved between machines.

2. Site/Application Specific usually consists of a custom login screen. This
is the most common form of web authentication. It is often implemented by
amateurs.

3. HTTP Authentication is a part of HTTP. The two types are basic and
digest. These are usually used on top of SSL. Both result in a browser di-
alog asking the user to enter their username and password. It is considered

Information Security and Privacy 60

unaesthetic. Basic HTTP authentication occurs when the server sends a
challenge, and the user replies with their username and password in plaintext.
Digest HTTP authentication occurs when the server sends a nonce, and
the user replies with

hash(username, password, nonce, url)

to ensure that it is immune to replay attacks. Password storage is another
distinction between the two forms of HTTP authentication. With basic au-
thentication, UNIX style hashed passwords are used. In digest authentication,
passwords must be stored in plaintext (this is true of most challenge response
protocols). Thus, password files can be stolen. All of these apply to any
custom authentication systems as well.

Generally, HTTP authentication is not used, as there is no fancy login screen (it
looks different on different browsers), no easy recovery from authentication failure,
and no password retrieval. Generally, it is only used by low-end websites. After the
initial authentication is performed by password, we also generally require continuing
authentication. Users do not want to enter their password for every action, so the
solution is to authenticate a session. The two main ways to accomplish this are
through cookies and custom solutions. The browser sends a token with each request,
so the server decides what that token is, and how to interpret it. The fundamental
issue however, is that tokens are sent by untrusted clients, so they could be forged.
The solutions to this is to use server-side storage or cryptographic sealing. We recall
that SSL is used throughout the entire process.

Server-Side Storage provides the client with a nonce. The server stores
(nonce, userID) or (nonce, sessionID) in database. When the client sends back
the nonce, the server looks up the identity. The server makes certain that nonces
are not guessable or findable by exhaustive search while the clients make sure nonces
are not (easily) stolen. However, server-side storage can be exhausted and sessions
must have a limited duration. Cryptographic Sealing occurs after the user logs
in. The server creates a token containing userID or sessionID. The token is then
encrypted and MAC’d using the secret key. For added security, a timestamp and
IP address can be included. This is similar to Kerberos TGT. The token is sent to
the client to remember. The client then sends back the token to server with each
request. Only server can decrypt the token and verify the hash. The server then
looks up the JSON Web Token.

31 April 3, 2017

31.1 Malware

Malware is short for malicious software. It is defined as software that is designed
to perform unwanted actions on a computer system. This could include disrupt-

Information Security and Privacy 61

ing computer operations, gathering sensitive information, displaying advertising,
stealing data, stealing CPU, disrupting operations, etc. There are many types of
malware such as viruses, worms, spyware, adware, etc. They are generally catego-
rized based on how they spread, for instance worms vs. viruses, and on what they
do (payload), such as for annoyance or erasing a filesystem. Other categories depend
on whether the malware requires a host program. That is, whether it is parasitic
or self-contained. In the list below, the first three are distinguished by the means
through which they spread, while the last four are distinguished by their payload:

• Viruses infect other programs and require user interaction to spread.

• Worms are similar to viruses, but spread automatically. They are also self-
contained.

• Trojan Horses are disguised malware since they pretend to be useful soft-
ware.

• Ransomware disables systems and demand payment for repair. This could
be accomplished by encrypting files for instance.

• Spyware gathers and transmits information without consent. This would
include keyloggers.

• Adware delivers unwanted advertising.

• Scareware scares the user into buying security services.

31.2 Viruses

A computer virus is simply a program that includes code for self-replication, in-
cludes a malicious payload, and includes a trigger. It replicates itself by modifying
other programs. It accomplishes this by inserting itself (fully or partially) into other
programs. The inserted code can then further replicate. It can be distinguished from
other forms of malware due to its self-replication that requires some form of user
assistance. For instance, the user has to run the infected software, insert a USB
drive, or open an email attachment.

In 1986, Brain was the first virus to infect personal computers. It was developed
by two brothers to protect their commercial software from piracy. The payload was
to slow down floppy disk access. Many users did not realize they were affected.
The virus came complete with the brothers’ address, three phone numbers, and a
message that told the user that their machine was infected and to call them for
inoculation.

The three main phases of a virus are propagation, trigger, and action. A
virus program would include code that infects a program by inserting the virus
through self replication. Once the trigger condition is met, the virus would perform

Information Security and Privacy 62

a malicious action through execution of the payload. For instance, this could be
erasing the filesystem or displaying an advertisement. This is all done before the
original program is allowed to run. The virus can acts according to the following
phases:

1. Dormant phase: The virus is doing nothing. It is simply laying low and
trying to avoid detection. Not all viruses have this phase.

2. Propagation phase: The virus is replicating. It is finding and infecting new
files, avoiding re-infection.

3. Triggering phase: Some logical condition causes the virus to transition to
the action phase. This could be based on a date, user action, a propagation
counter, etc.

4. Action phase: The malicious action is executed (payload).

Some infection types include overwriting, where part of the original code is de-
stroyed, pre-pending, where the original code is retained (possibly compressed),
infection of libraries/system, where the virus resides in memory, and macro
viruses, where documents are infected. The virus may be inserted as a contiguous
block, or separated into small chunks and stored throughout the infected program.

Virus developers often try to hide or conceal their viruses from detection. An
encrypted virus uses a decryption engine and an encrypted body. A randomly
generated encryption key is used, and detection looks for the decryption engine.
Encryption is often a very simple algorithm, such as XOR. A polymorphic virus
is an encrypted virus with random variations of the decryption engine (for exam-
ple, padding code). Signatures are useless, so detection is performed using a CPU
emulator and decryption or pattern analysis. A metamorphic virus uses different
virus bodies. An approach for detection includes code permutation and instruction
replacement. This type of virus is difficult to detect.

Macro and scripting viruses take advantage of the active content in doc-
uments. The most common example is Microsoft Word and Excel macros, or PDF
documents. These were very common in the mid-1990s. This is because they are
platform independent, they infect documents (instead of programs), often install in
the main document template, and spread easily. These types of viruses can exploit
the macro capability of Microsoft Office applications. More recent releases of MS
Office have included built-in protection mechanisms. Various antivirus programs
have been developed, so these are no longer a predominant virus threat.

In 1987, Fred Cohen demonstrated that there is no algorithm that can perfectly
detect all possible viruses, since this is an undecidable problem, “In order to deter-
mine that a given program ’P’ is a virus, it must be determined that P infects other
programs. This is undecidable since P could invoke any proposed decision procedure
‘D’ and infect other programs if and only if D determines that P is not a virus. We

Information Security and Privacy 63

conclude that a program that precisely discerns a virus from any other program by
examining its appearance is infeasible.” Thus, our best form of protection against
viruses is to prevent viruses from entering the system in the first place. This includes
user education and technological measures. Prevention may fail, so we need another
plan. Antivirus software is responsible for the detection and removal of viruses:

• Signature based detection revolves around a unique binary string in an
executable (fingerprint). This is difficult to perform with advanced viruses.

• File integrity check based detection uses save file digests in a database.
It periodically scans and compares the results.

• Heuristic scanning performs detection from behaviour. This includes em-
ulation (running the tested program in a sandbox environment). It is ad-
vantageous because it allows for the detection f unknown malware. However,
scanning and analysis take time, so this slows down the system considerably.
False positives are also a problem. Antivirus programs will often quarantine
the suspected file, instead of deleting it.

31.3 Worms

Worms are a form of malware that spreads copies of itself, usually over a network,
without the need to inject itself in other programs. This is often accomplished
without human interaction. The act of spreading is often the most harmful effect of
the worm, since this exhausts network resources. Worms usually carry a malicious
payload, such as deleting files or installing backdoors. The first worm was built in
the labs of John Shock and Jon Hepps at Xerox PARC in the early 80s. Christmas
Tree written in REXX, released in December 1987, targeted IBM VM/CMS systems,
and was the first worm to use email service. The first internet worm was the Morris
Worm, which was released on November 2, 1988 and written by Cornell student
Robert Tappan Morris. Some notable worms are presented below:

• Melissa (1998): E-mail worm. First to include virus, worm and Trojan in one
package.

• Code Red (2001): Exploited Microsoft IIS bug and probes random IP ad-
dresses. It consumed significant Internet capacity when active.

• Code Red II (2001): Also targeted Microsoft IIS, installs a backdoor for access

• Nimda (2001): Had worm, virus and mobile code characteristics. It spread
using e-mail, Windows shares, Web servers, Web clients, and backdoors.

• SQL Slammer (2003): Exploited a buffer overflow vulnerability in SQL server.
Compact and spread rapidly.

Information Security and Privacy 64

• Sobig.F (2003): Exploited open proxy servers to turn infected machines into
spam engines.

• Mydoom (2004): Mass-mailing e-mail worm that installed a backdoor in in-
fected machines.

• Warezov (2006): Creates executables in system directories. The worm sends
itself as an e-mail attachment. It can disable security related programs.

• Conficker (2008): Exploits a Windows buffer overflow vulnerability. It was the
most widespread infection since SQL Slammer

• Stuxnet (2010): Restricted rate of spread to reduce chance of detection. It
targeted industrial control systems.

Unlike viruses, worms propagate by finding and infecting vulnerable hosts. They
need a way to tell if a host is vulnerable, and a way to determine whether the host
is already infected. Initially, there is slow initial growth. This phase does not last
long, as it soon gives way to exponential growth after the initial phase. When there
is nothing left to infect, it slows down. It follows logistic growth.

32 April 5, 2017

32.1 Worm Development

To develop a worm, vulnerabilities are first identified. This includes software bugs
and vulnerabilities in trusted patterns (email addresses). Code is then written to
exploit the vulnerabilities. A large target list is then generated. This includes some
aspect of unpredictability and randomness. Often, they target local computers.
The next step involves installation and execution of the payload. The payload is
often downloaded later, and activated synchronously. The next step is querying and
reporting whether the host has already been infected. The last step is stealth mode.

32.2 Trojan Horse

A Trojan horse (or Trojan) is a malware program that appears to perform some
useful task, but which also carries a malicious payload. It uses social engineering for
spreading. It tricks the user into assisting in the compromise of their own system.
Trojan horses are often installed by a user or administrator, either deliberately or
accidentally. Examples include mobile phone trojans.

To defend against malware, we follow these general steps:

• Keep the operating system updated.

• Keep other software updated.

Information Security and Privacy 65

• Install antivirus software.

• Update antivirus software.

• User education.

• Deploy firewalls.

• Deploy intrusion detection systems.

32.3 Botnets

Apart from ransomware (disabling systems in demand of payment for repair), spy-
ware (gathering and transmitting data), adware (delivering advertisements), and
scareware (scaring users into buying their security service), some other forms of
malware payloads include backdoors, which provide the attacker access to the sys-
tem, and bots or zombies, which allows the host to be remotely controlled and
join a botnet.

A botnet is an interconnected network of computers infected with malware
without the user’s knowledge and controlled by cybercriminals. They are typically
used to send spam emails and to perform distributed denial of service attacks. Bot-
nets can be built via payloads of other malware such as viruses, worms, and trojans.
Drive-by downloads utilizing bugs in browsers can result in software installed on
a machine just by visiting a website. It includes automated exploits to penetrate
machines. One can buy or rent botnets, and even have them custom built. It is also
possible to steal them as several attackers attempt to steal each other’s bots - some
bots will patch security holes on host systems to minimize this. Many modern bots
are remotely upgradable. That is, they download new versions, fix bugs, change
encryption parameters, and download new payloads (DDoS, email spam, scanning).
The primary uses of botnets are for financial gain, email spam, distributed denial of
service attacks, extortion, hactivism, revenge, spyware, click-fraud, further infection,
bitcoin mining, combined attacks, diversion, or interruption of security mechanisms.

Distributed Denial of Service (DDoS) attacks were first seen in 1999. There
was evidence of a big one planned for Y2K, but this never happened. Today they are
the most common form of DoS attack. Most of them exhaust network bandwidth by
using a large number of compromised computers (called zombies or bots), usually
in the range of 10000 to 30000000, connected through a network. A control node is
used to issue commands to the bots, while the bots do the actual work. Common
communication channels include IRC and P2P networks. These types of attacks are
hard to trace back.

A denial of service attack is a cyber attack on a system with the aim to
deny service to legitimate users, and to disrupt normal operations. Typically, they
are executed over a network by flooding a server with illegitimate requests. These
are usually performed against high-profile organizations or companies. DoS targets

Information Security and Privacy 66

network bandwidth by clogging up the network. This is made possible when sending
messages is possible at higher rates than the ability to received them. DoS may also
target the CPU. For instance, by making the receiver try to perform expensive
decryption or signature checks. Memory can also be targeted, as it could be forced
to keep many connections in open state. Note that this does not necessarily mean
all of physical memory. Disk space may be attacked by filling up logs. Any finite
resource can be exhausted.

33 April 7, 2017

33.1 Network Security

Computers communicate through interconnected hubs, switches, and routers. This
is performed through a combination of circuit and packet switching:

1. Circuit switching is used in legacy phone networks. It provides a single
route through a sequence of hardware devices, established when two nodes
start communication. Data is sent along the route, and the route is maintained
until communication ends.

2. Packet switching occurs when data is split into packets before it is sent.
Packets are transported independently through the network. Each packet is
handled on a best efforts basis. Packets may follow different routes, but are
eventually re-assembled on delivery.

Thus, the main difference is that circuit switching sends all the data through a single
channel, while packet switching sends the split data through different channels before
it is reassembled at its destination.

A network protocol defines the rules for communication between computers.
Protocols are broadly classified as connectionless and connection oriented:

1. Connectionless protocol send data out as soon as there is enough data to
be transmitted. It is advantageous because there is low overhead, but can
result in data loss, duplication, and deliveries that are out of sequence. Some
examples include user datagram protocol (UDP) and Internet Protocol (IP).

2. Connection oriented protocol provide a reliable connection stream be-
tween two nodes. It consists of set up, transmission, and tear down phases. It
emulates a circuit-switched network. Its advantages and disadvantages are the
reverse of connectionless protocol. An example would be transmission control
protocol (TCP), a protocol that is implemented on top of IP.

A network packet typically consists of control information for addressing
the packet, either in the header or sometimes in the footer/trailer. This can include
the origin address, destination address, and other information. A payload is a

Information Security and Privacy 67

actual data that is sent. Visually, a packet can be thought of as consisting of a
frame header, an IP header, a TCP header, the data, followed by the frame trailer.

Network models are typically implemented as a stack of layers. Higher layers use
the services of lower layers via encapsulation. A layer can be implemented in either
hardware or software, with the bottom-most layer often implemented in hardware. A
network device may implement several layers. The communication channel between
two nodes is established for each layer. The actual exchange occurs through a
channel at the bottom layer, with virtual channels at higher layers.

The internet for instance, consists of virtual channels between the server, through
routers, to your computer. The application layer, transport layer, network layer, and
link are the highest to lowest software levels in the server and client. The server
connects to the physical layer through the link. The ethernet of the physical layer
connects this to the link of a router with only the link and network layers. Fiber
optics in the physical layer transfer data to another router with similar layers, which
is then received by the client through Wi-Fi in the physical layer. The physical layers
always connect to the link layer in software in each component.

33.2 Packet Routing

To deliver a packet, we need route finding mechanisms. This is implemented as
route finding protocols. There are different protocols for LANs and WANs.

• In a local area network, these packets are routed using switches and a
MAC address (media access control). a MAC address is a 48 bit number
usually represented in hex. For instance,

00− 1A− 92−D4−BF − 86.

The routing protocol used is the Address Resolution Protocol (ARP).

• Over the internet, these packets are routed using routers along with an IP
address and port numbers. IP addresses are 32 bit numbers, such as

136.159.7.7.

Some routing protocols used are Border Gateway Proctcols (BGP) and
Open Shortest Path First (OSPF).

33.3 Local Area Routing

A switch is a common network device that operates at the link layer. It has multiple
physical ports, each connected to a computer. The switch operates by first learning
the MAC address of each computer connected to it. It then forwards frames only
to the destination computer. Older hubs simply forwarded traffic to all connected
hubs. Switches can be combined by arranging them into a tree structure. In this

Information Security and Privacy 68

case, each port learns the MAC addresses of the machines in the segment (subtree)
connected to it. Fragments to unknown MAC addresses are broadcast, while frames
to MAC addresses in the same segment as the sender are ignored.

MAC address filtering occurs when a switch is configured to provide service
only to machines with specific MAC addresses. Allowed MAC addresses need to be
registered. This can be done manually by a network administrator, or by an auto-
mated system (username and password). A MAC spoofing attack impersonates
another machine. It does this by finding the MAC address of the target machine,
then reconfiguring the MAC address of a rogue machine (this can be done easily
in Linux and Windows). The target machine is then turned off or unplugged. To
prevent against these spoofing attacks, one can block part of the switch when a
machine is turned off or unplugged. One can also monitor and disable duplicate
MAC addresses.

ARP stands for Address Resolution Protocol. It connects the network
layer to the data layer by converting IP addresses to MAC addresses. ARP works
by broadcasting requests and caching responses for future use. The protocol begins
with a computer broadcasting a message asking the entity with a certain IP address
to tell this to an entity with another IP address. When the machine with the
particular IP address receives the message, it broadcasts a response, claiming that
it has a certain MAC address. The requestor’s IP address is contained in the packet
header. The Linux and Windows command

arp -a

displays the ARP table. This includes the Internet Address (IP), the Physical
Address (MAC), and the Type (many are dynamic).

The ARP table is updated whenever an ARP response is received. Requests are
not tracked, and responses are not authenticated. Thus, the ARP protocol assumes
that machines trust each other. As a result, a rogue machine can spoof other
machines. This is known as ARP spoofing or ARP cache poisoning. Almost
all ARP implementations are stateless. Therefore, the ARP cache updates every
time it receives a reply, even if it did not send any ARP request! It is possible to
poison an ARP cache by sending gratuitous ARP replies. These unsolicited replies
can be useful at times, such as by dynamically replacing a failed server. However,
an attacker can easily convince other machines to send their traffic to the attacker
instead.

Under normal routing conditions, the LAN user connects to the hub or switch,
which then connects to the LAN gateway before connecting to the internet. Routing
that is subject to ARP cache poisoning now contains the additional connection
between the hub/switch to a malicious user, thus permitting interference.

Information Security and Privacy 69

34 April 10, 2017

Internet Routing The Internet protocol (IP) is a communication protocol for
relaying packets across network boundaries, thus enabling internet. Networks are
connected using routers. A router is a networking device that forwards packets to
another router. This is somewhat similar to a switch, but interconnects networks. IP
uses numeric addresses for routing. These are 32 bit numbers such as 136.159.7.7.
There are typically several hops in the route. The path that the packets follow
is decided using BGP/OSPF protocols. The following are some examples of IP
vulnerabilities:

• Plaintext transmission means that eavesdropping is possible at any in-
termediate host during routing. This concerns confidentiality.

• No source authentication means that the sender can spoof the source
address, thereby making it difficult to trace an attack.

• No integrity checking means that the entire packet (header and data) can
be modified, allowing MITM attacks.

• No bandwidth constraints means that a large number of packets can be
injected into the network to launch denial-of-service attacks.

The Transmission Control Protocol (TCP) complements the IP protocol.
It guarantees reliable data transfer, and automates error detection, retransmission,
packet splitting and reassembly. It also implements congestion control, adds port
numbers, etc. Most popular application protocols are built on top of TCP, including
HTTP, SSH (Secure Shell), SSL/TLS, and FTP (File Transfer Protocol). When a
TCP packet is received, the sender gets an ACK (Acknowledgement) receipt, thus
making the protocol reliable. A TCP packet has a sequence number that is used to
order the packets and discard duplicates. TCP uses a checksum to detect errors in
transmission. However, there is very little security built into TCP. To establish a
TCP connection, we need to go through a three way handshake:

1. The client requests a connects by sending a SYN packet.

2. The server responds by sending a SYN/ACK packet.

3. The client sends an ACK packet.

34.1 Network Attacks

A SYN flood attack was an early internet DoS attack that was first discovered
in 1994. The attacker sends many SYN packets to the server. This type of attack
uses forged source addresses. The SYN-ACK reply has nowhere to go, or goes

Information Security and Privacy 70

unanswered. The server never receives the final ACK. Thus, the server keeps the
connection in a half-open state, so the server’s memory eventually fills up.

ICMP - Internet Control Message Protocol - is used for error messages
and diagnostics. An example would be a PING message that is used to test the
reachability and round-trip time of a host on the internet. A PING flood attack
(ICMP flood attack) aims to overwhelm the network of a target organization. The
attacker sends many PING messages with spoofed source IP addresses. The victim
will be busy replying to non-existent senders. This is not a common attack anymore,
as it is quite costly for the attacker and requires that the attacker’s bandwidth is
greater than the victim’s bandwidth.

DDoS PING flooding is a type of Smurf attack. It is a DDoS attack that
uses a broadcast mechanism built into IPv4. Packets sent to a special address are
distributed to all hosts in an IP range. For example, a packet sent to IP address
136.159.55.255 could be sent to all hosts 136.159.55.∗, where the last three digits
could change. An attacker can therefore send a PING request to a router allowing
broadcast. The attacker spoofs the source address, thus aiming it at the victim.

34.2 Defense Against Network Flooding

Flooding attacks are usually classified based on the network protocol that is used.
The intent is generally to overload the network capacity. Almost any type of network
packet can be used. Currently, there is no perfect solution that could offer complete
protection against all attacks. Some current strategies include filtering traffic using
firewalls (block any PING requests from outside) and using cryptographic solutions
(such as SSL/TLS and IPsec).

Cryptographic solutions are applied above the network layer, such as SSL/TLS
and SSH. This protects against connection hijacking, data injection, and eavesdrop-
ping. However, it does not protect against DoS attacks by spoofed packets. At
the network layer, Internet Protocol Security, (IPsec) also protects against IP
address spoofing. IPsec is essentially the IP protocol along with additional cryp-
tography. It is similar to SSL/TLS, but works at network layer. Each packet is
authenticated and encrypted, including data and headers. IPSEC therefore pro-
vides data integrity, mutual authentication, replay protection, and confidentiality.
It does not prevent DDoS attacks directly, but makes them more difficult.

DDoS defense is still an active area of research on both ends. So far, there is no
comprehensive solution. Some heuristics are starting to emerge, but most defenses
are on a case by case basis:

• Over Provisioning: Use bigger pipes than needed, in order to ride out the
attack.

• Black-Hole Routing: Use a router at the Internet Service Provider
(ISP) that can direct the traffic of an attacked server to nowhere. The service
goes offline for a while, but the rest of network is unaffected.

Information Security and Privacy 71

• Anomaly Filtering: Detect anomalous patterns, then instruct a router up-
stream (ISP) to filter traffic based on the anomaly.

• Rate Limiting: If router output is overloaded, then inspect the input links
and tell the upstream routers to rate limit connections. This process is repeat
recursively through a pushback mechanism. Thus, for routes where there is
heavy traffic flow directed to the server, a pushback message is sent from the
server back through the paths with heavy traffic.

34.3 Firewalls

A firewall is an integrated collection of security measures designed to prevent unau-
thorized electronic access to a networked computer system. It act as a barrier be-
tween a private network and a public network to limit communication with the
outside world. It can be deployed as software or dedicated hardware. Firewalls offer
a good amount of security for relatively low cost. Typical firewall setup is described
below:

• For a dedicated hardware firewall, a local network is connected to a main hub
or switch. This then connects to the internet after passing the firewall.

• For a dedicated firewall/router, the computers are directly connected to router
and firewall. This then permits connection with the internet.

• For firewalls running as software, each device with the software firewall is
directly connected to the internet.

Firewalls follow a set of rules that are usually arranged in a table. The Direction,
Src IP, Dst IP, Src Port, Dst Port, and State are listed, along with an Action to
take (such as Reject, Accept, or Drop). The first rule that matches is applied, and
the specific action is taken.

We use firewalls because most software contains bugs. Most software has security
vulnerabilities, and most computers have security holes. Thus, computers accessible
from outside networks are security risks. Computers connected to the outside world
should be protected. Firewalls are based on much less code, and hence have fewer
bugs. They can be centrally or professionally administered, and are a great place
to do more monitoring and logging. They can partition a network into separate
security domains, with each domain having it’s own security policy.

Typical firewall deployment in an organization assumes that everyone on the
LAN is a good guy, and that bad guys live on the WAN. The demilitarized zone
(DMZ) contains necessary servers that are potentially dangerous, such as mail and
web servers. The hosts on LAN can access DMZ, but the DMZ has limited access to
LAN. DMZ is protected from the outside via firewall. Thus, computers connected
to a LAN Switch must communicate to the DMZ network connected to another

Information Security and Privacy 72

LAN switch through an internal firewall. This other LAN switch is connected to an
external firewall, which passes a boundary router before reaching the internet.

34.4 Firewall Approaches

Firewalls are used to enforce policy. These policies often reflect administrative
boundaries. This can take the form of internal firewalls between domains, such as
administrative, research, and students.

• Firewalls can be designed to block only dangerous traffic. This is a less disrup-
tive option, but not a very good approach in general as it requires the system
administrator be smarter than the attacker.

• Another approach is to use firewalls that block everything by default, only
allow necessary traffic through. This tends to be more disruptive, but is also
much more secure.

Many organizations permit all outbound traffic, while some organizations decide
to limit outbound traffic. This could be for libraries for child-friendly internet,
regulatory requirements, or cutting down on social media activities. Firewalls can
limit outgoing traffic as effectively as inbound traffic.

35 April 12, 2017

35.1 Firewall Types

There are many types of firewalls, some of which are listed below. Many firewalls
are a combination of these types:

• Simple packet filters were the original firewalls. They are very cheap, as
individual packets are inspected and then either accepted or rejected. Rejec-
tion means that they either silently ignore (drop), or send an error response
(reject). Packet header fields inspected for source and destination address,
source and destination ports, and protocol and TCP flags. Simple packet fil-
ters mostly works at the network (IP) layer, with a little bit of peeking into
the transport (TCP) layer (ports and flags). There is no notion of state or
sessions, so it does not work well with protocols like File Transfer Protocol
(FTP and Remote Procedure Call (RPC). In this scheme, we are concerned
with how to handle outgoing connections without state. If we want to permit
outgoing connections, we have to permit reply packets, but we need to do this
without managing states. Recall the TCP handshake: SYN, SYN-ACK, ACK.
After that, all packets have an ACK-flag set in the header. The solution is to
allow all inbound packets with the ACK-flag set.

Information Security and Privacy 73

• Stateful packet filters are the most common type of packet filter today.
The firewall maintains per-connection state (requires some amount of RAM),
where the states may be new or established connections. When a packet is
sent out, the firewall records it in an internal state table. When an inbound
packet arrives, it can be looked up and associated with a state. Most firewalls
have limited memory, so this can be used for DoS attacks. Stateful packet
filters solves many problems of simple packet filters, as they can handle User
Datagram Protocol (UDP) query/response, and associate ICMP packets with
a particular connection. However, they are still not able to handle RPC. Many
firewalls come with extra tools (helpers) to handle more complex protocols

• Application layer firewalls are not discussed in much detail.

• Circuit level gateway are not discussed in much detail.

• Personal and distributed firewalls are not discussed in much detail.

35.2 Firewall Strengths and Weaknesses

Many firewalls have network address translators (NAT) functionality built in.
This translates the source address and port numbers. Thus, some or all hosts behind
the firewall can have unroutable IP addresses (private range). The primary purpose
of NAT is coping with the limited number of global IP addresses. It also adds
extra security, as the addresses behind the firewall can be hidden from the attacker.
Network reconnaissance is made more difficult.

Many draconian administrators and organizations only allow HTTP traffic. As
a result, a lot of newer software can be configured to run over HTTP ports. Since
HTTP usually gets through most firewalls, firewalls are increasingly less effective but
not yet useless. They still offer a good amount of security for not much additional
cost.

Firewalls are effective, since they define a single point for monitoring and block-
ing traffic. A single firewall can provide some protection for an entire local network.
It is also a fairly inexpensive solution that solves many problems (but not all prob-
lems). However, firewalls also come with many inherent limitations. Firewalls are
not some magical solution to all network security related problems. Firewalls are
a response to the fact that we do not know how to write software that is secure,
correct, and easy to administer. Better network protocols will not eliminate the
need for firewalls. Firewalls cannot protect against attacks bypassing the firewall,
against insider attacks (for instance, someone installing WiFi on the inside), or
against devices that are already infected.

Information Security and Privacy 74

35.3 Domain Name System

TCP/IP operate on numeric IP addresses, but humans remember words easier
than numbers. For instance, users prefer to type in “www.google.com” instead
of “172.217.23.228”. However, the browser needs to know the IP address, because it
uses TCP to communicate. To resolve this, your browser allows you to type in the
url, but it then contacts a DNS service to get the corresponding IP address. Domain
Name System (DNS) is system for mapping domain names to IP addresses. The
client contacts the DNS server requesting the IP address for a particular website.

Domain names are two or more labels, separated by dots. For example, “http://www.harvard.edu.”
or “http://www.seas.harvard.edu.” are domain names. The rightmost label (ca.) is
the top-level domain (TLD). The DNS system is organized into a hierarchy of
name servers based on domain names. The root server (.) connects to the TLD
server (.edu), which connects to the domain server (harvard.edu.), followed by the
subdomain server (.seas.harvard.edu.)... Servers communicate with each other (up
or down).

Since it is impractical for a single DNS server to know the entire internet, these
DNS servers are organized into a hierarchy (tree structure). There are thirteen
logical root servers, with hundreds of physical root servers (for performance and
redundancy). A resolution method is required when the answer is not in the cache.
The client asks the ISP DNS server. This then asks the root name server, which
responds by directing the ISP DNS sever to ask the top level domain. The ISP DNS
server repeatedly asks each successive subdomain until it obtains the numeric IP
address.

35.4 DNS Security

DNS Hijacking involves changing the IP address of a DNS server on a computer
either via trojan horse or via hacking an insecure router. An attacker can redirect
traffic to a spoofed site (pharming), or execute a MITM attack. To defend against
this:

• Do not download random software.

• Install antivirus.

• Keep your router updated.

• Switch to Google’s public DNS service.

• Switch to Google’s public DNS-over-HTTPS service. This can be found at
“https://github.com/behrooza/dnsd”

There would be too much network traffic if the DNS tree is traversed for each
query. The root zone would be rapidly overloaded. Thus, the DNS servers cache

Information Security and Privacy 75

results for a specified amount of time. Operating systems and browsers also cache
DNS results. Unfortunately, DNS communication was not designed to be secure.
DNS cache poisoning occurs when the DNS servers are sent false records to cache.
DNS security uses a 16 bit request identifier to pair queries with answers. The
cache may be poisoned when a name server disregards identifiers, has predictable
identifiers, or accepts unsolicited DNS records. To prevent this from happening, we
can either fix the above problems, or deploy DNSSEC.

DNS Security Extension (DNSSEC) is DNS combined with digital signa-
tures. It guarantees DNS reply origin authentication, integrity of reply, and au-
thenticity of denial of existence. DNSSEC accomplishes this by digitally signing the
DNS replies at each step of the way through a mechanism similar to root certifi-
cates. It is still not fully deployed, even though the initial Request for Comments
(RFC) was in 1997, due to critical mass, politics, and cost. In 2016, the resolvers
performing exclusive DNSSEC are about 15%. The Google Public DNS implements
DNSSEC validation by default.

35.5 Virtual Private Network

A virtual private network (VPN) allows private networks to be safely extended
over the internet. It creates virtual point-to-point connections, usually through
encrypted tunnels. Many implementations are based on SSL/TLS. If encrypted,
it provides data confidentiality, integrity, and authentication. When connected via
VPN, remote resources are available the same way as if connected locally. VPM are
implemented on many routers. There are also many open source implementations,
as it does not require special application support. VPNs can be categorized as:

• Point-to-Point allows a single host to connect remotely to a private net-
work. An example would be an employee accessing company resources from
home. Another example would be a student accessing the university library’s
resources while on vacation.

• Site-to-Site provides a secure bridge between two or more physically distant
networks. An example would be making two offices appear to be on the same
local network.

	January 9, 2017
	Introduction

	January 11, 2017
	Information Security
	Challenges to Computer Security
	Computer Security Terminology
	Threat Consequences

	January 13, 2017
	Computer System Assets
	Network Attacks
	Security Design Principles
	Methods of Attack

	January 16, 2017
	Computer Security Strategy
	Password Authentication
	Guess-Verify Attack

	January 18, 2017
	Guess-Verify Attack Cont'd
	Defending Against Guess-Verify Attacks
	Keystroke Logging, Phishing, and Social Engineering

	January 20, 2017
	Password Protection

	January 23, 2017
	Graphical Passwords

	January 25, 2017
	Vulnerabilities
	Token Based Authentication

	January 27, 2017
	Token Based Authentication Cont'd

	January 30, 2017
	Token Based Authentication Cont'd

	February 1, 2017
	Biometric Authentication
	Fingerprint and Iris Scanning

	February 3, 2017
	Handwriting Biometrics
	Biometric Assessment

	February 6, 2017
	Access Control
	Unix/Linux File System Security

	February 8, 2017
	NTF

	February 10, 2017
	Role Based Access Control (RBAC)
	Attribute Based Access Control (ABAC)

	February 13, 2017
	Midterm Review

	February 27, 2017
	Introduction to Cryptography
	Ciphers

	March 1, 2017
	Ciphers Cont'd

	March 3, 2017
	Measures of Security
	Types of Cryptography
	Cryptanalytic Attacks

	March 6, 2017
	Cryptographic Hash Functions

	March 8, 2017
	Cryptographic Hash Function Applications

	March 10, 2017
	Symmetric Cryptography
	Block Ciphers

	March 13, 2017
	Block Cipher Modes of Operation
	Stream Ciphers
	Confusion and Diffusion

	March 15, 2017
	Public Key Cryptography
	Diffie-Hellman Key Exchange

	March 17, 2017
	Enveloped Public Key Encryption
	RSA

	March 20, 2017
	Digital Certificates

	March 24, 2017
	SSL and TLS
	SSL and TLS Protocols
	Master Secret

	March 27, 2017
	Web Security
	Server and Client

	March 29, 2017
	Browser Security

	March 31, 2017
	Web Authentication

	April 3, 2017
	Malware
	Viruses
	Worms

	April 5, 2017
	Worm Development
	Trojan Horse
	Botnets

	April 7, 2017
	Network Security
	Packet Routing
	Local Area Routing

	April 10, 2017
	Network Attacks
	Defense Against Network Flooding
	Firewalls
	Firewall Approaches

	April 12, 2017
	Firewall Types
	Firewall Strengths and Weaknesses
	Domain Name System
	DNS Security
	Virtual Private Network

